全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于特征聚类集成技术的在线特征选择

DOI: 10.11772/j.issn.1001-9081.2017.03.866

Keywords: 组特征选择,聚类集成,流特征,在线特征选择

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对既有历史数据又有流特征的全新应用场景,提出了一种基于组特征选择和流特征的在线特征选择算法。在对历史数据的组特征选择阶段,为了弥补单一聚类算法的不足,引入聚类集成的思想。先利用k-means方法通过多次聚类得到一个聚类集体,在集成阶段再利用层次聚类算法对聚类集体进行集成得到最终的结果。在对流特征数据的在线特征选择阶段,对组构造产生的特征组通过探讨特征间的相关性来更新特征组,最终通过组变换获得特征子集。实验结果表明,所提算法能有效应对全新场景下的在线特征选择问题,并且有很好的分类性能

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133