全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于概率主题模型的景点知识挖掘及其可视化

DOI: 10.11772/j.issn.1001-9081.2016.08.2103

Keywords: 概率主题模型,旅游文本,噪声,Gibbs采样,可视化

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对旅游文本噪声多、景点多且展示不直观的问题,提出一种基于概率主题模型的景点-主题模型。模型假设同一篇文档涉及多个具有相关关系的景点,引入“全局景点”过滤噪声语义,并利用Gibbs采样算法估计最大似然函数的参数,获取目的地景点的主题分布。实验通过对景点主题特征进行聚类,评估聚类效果从而间接评价模型训练效果,并定性分析“全局景点”对模型的作用。实验结果表明,该模型对旅游文本的建模效果优于基准算法TF-IDF与隐含狄利克雷分布(LDA),且“全局景点”的引入对建模效果有明显的改善作用。最后通过景点关联图的方式对实验结果进行可视化展示

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133