|
计算机应用 2018
基于多角度多区域特征融合的苹果分类方法DOI: 10.11772/j.issn.1001-9081.2017102412 Keywords: 图像颜色直方图,多角度多区域分类,特征融合,苹果图像分类,水果和植物图像分类 Abstract: 摘要 日常生活中人们分拣辨别不同种类的苹果需要消耗大量的人力物力,为解决这一问题,提出了一种基于多角度多区域特征融合的苹果图像分类方法。首先,收集五类总共329个苹果,使用手机摄像头从上面、下面和3个不同侧面共五个角度采集每个苹果的图像,每个图像裁剪若干个(1~9)区域块;其次,每个区域块用颜色直方图向量来表示,多个区域块的直方图向量通过首尾相连进行融合,以此生成一个图像的表示;最后,将得到的329个样本数据用12种分类器进行分类比较。实验结果表明,当多角度多区域图像特征融合时,分类效果总是好于单角度单区域,而且越多越好;当使用5个角度的图像,每个图像裁剪9个区域时,偏最小二乘(PLS)分类器的分类精度达到97.87%,好于深度学习。所提方法操作简单、精度较高,算法复杂度为4n,n为图像裁剪区域块总数,可以推广成手机应用,并应用到更多水果和植物图像分类上
|