全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于科优先策略的植物图像识别

DOI: 10.11772/j.issn.1001-9081.2018041309

Keywords: 科优先策略,自然环境植物图像,植物图像识别,深度学习,卷积神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 植物识别领域的研究包括单一背景和自然环境植物图像识别,由于背景噪声的存在,自然环境植物图像识别难度更大。针对如何降低卷积神经网络(CNN)的权重大小、如何改善过拟合、如何提高模型对自然环境植物的识别率和泛化能力的问题,提出科优先(FP)的植物识别方法。与轻量卷积神经网络MobileNet模型结合,利用迁移学习的方法,建立基于MobileNet的科优先(FP-MobileNet)植物识别模型。单纯使用MobileNet模型在单一背景植物数据集flavia上获得了99.8%的识别率;对于更具挑战的自然环境花卉数据集flower102,在训练集样本数量大于测试集时FP-MobileNet获得了99.56%识别率,在训练集样本数量小于测试集时FP-MobileNet仍获得了95.56%的识别率。实验结果表明,两种数据集划分方案下FP-MobileNet的识别率均高于单纯的MobileNet模型;并且FP-MobileNet模型在获得较高识别率的同时,权重仅占13.7 MB,兼顾了精度和延迟,适合推广到需要轻量模型的移动设备

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133