|
计算机应用 2016
多信息动态融合的运动目标检测方法DOI: 10.11772/j.issn.1001-9081.2016.08.2306 Keywords: 运动目标检测,视觉显著性,结构随机森林,运动边界,动态融合 Abstract: 摘要 针对基于视觉显著性的运动目标检测算法存在时空信息简单融合及忽略运动信息的问题,提出一种动态融合视觉显著性信息和运动信息的运动目标检测方法。该方法首先计算每个像素的局部显著度和全局显著度,并通过贝叶斯准则生成空间显著图;然后,利用结构随机森林算法预测运动边界,生成运动边界图;其次,根据空间显著图和运动边界图属性的变化,动态确定最佳融合权值;最后,根据动态融合权值计算并标记运动目标。该方法既发挥了显著性算法和运动边界算法的优势,又克服了各自的不足,与传统背景差分法和三帧差分法相比,检出率和误检率的最大优化幅度超过40%。实验结果表明,该方法能够准确、完整地检测出运动目标,提升了对场景的适应性
|