全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于k-means的自动三支决策聚类方法

DOI: 10.11772/j.issn.1001-9081.2016.08.2061

Keywords: 聚类,三支决策,有效性指数,k-means算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 应用广泛的k-means算法结果是一种二支决策的结果,即对象要么属于某个类要么不属于这个类,这种决策方式难以适用于一些具有不确定现象的环境,因此提出三支决策聚类方法来反映对象与类之间的关系,即:对象确定属于某类、可能属于某类或确定不属于某类。显然,二支决策是三支决策的一种特例。此外,从类内紧凑性和考虑近邻类间分离性角度出发,定义了分离性指数、聚类结果评估有效性指数,并提出了一种自动三支决策聚类算法。该方法为处理具有不确定信息的基于k-means算法框架的聚类数目自动确定的难题提供了一种新的解决思路。在人工数据集和UCI真实数据集上的初步对比实验结果表明所提出的方法是有效的

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133