全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于空间邻近的点目标聚类方法

DOI: 10.11772/j.issn.1001-9081.2016.05.1267

Keywords: 空间聚类,Voronoi图,空间邻近,桥链接

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 空间聚类是空间数据挖掘和知识发现领域的主要研究方向之一,但点目标空间分布密度的不均匀、分布形状的多样化,以及"多桥"链接问题的存在,使得基于距离和密度的聚类算法不能高效且有效地识别聚集性高的点目标。提出了基于空间邻近的点目标聚类方法,通过Voronoi建模识别点目标间的空间邻近关系,并以Voronoi势力范围来定义相似度准则,最终构建树结构以实现点目标的聚集模式识别。实验将所提算法与K-means、具有噪声的基于密度的聚类(DBSCAN)算法进行比较分析,结果表明算法能够发现密度不均且任意形状分布的点目标集群,同时准确划分"桥"链接的簇,适用于空间点目标异质分布下的聚集模式识别

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133