全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

兼顾特征级和决策级融合的场景分类

DOI: 10.11772/j.issn.1001-9081.2016.05.1262

Keywords: 场景分类,特征级融合,决策级融合,Dezert-Smarandache理论推理,基本信度赋值,遥感影像

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对单一特征在场景分类中精度不高的问题,借鉴信息融合的思想,提出了一种兼顾特征级融合和决策级融合的分类方法。首先,提取图像的尺度不变特征变换词包(SIFT-BoW)、Gist、局部二值模式(LBP)、Laws纹理以及颜色直方图五种特征。然后,将每种特征单独对场景进行分类得到的结果以Dezert-Smarandache理论(DSmT)推理的方式在决策级进行融合,获得决策级融合下的分类结果;同时,将五种特征串行连接实现特征级融合并进行分类,得到特征级融合下的分类结果。最后,将特征级和决策级的分类结果进行自适应的再次融合完成场景分类。在决策级融合中,为解决DSmT推理过程中基本信度赋值(BBA)构造困难的问题,提出一种利用训练样本构造后验概率矩阵来完成基本信度赋值的方法。在21类遥感数据集上进行分类实验,当训练样本和测试样本各为50幅时,分类精度达到88.61%,较单一特征中的最高精度提升了12.27个百分点,同时也高于单独进行串行连接的特征级融合或DSmT推理的决策级融合的分类精度

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133