全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自适应相似组稀疏表示的图像修复算法

DOI: 10.11772/j.issn.1001-9081.2017.04.1169

Keywords: 图像修复,稀疏表示,自适应相似组,学习字典,自适应性

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对图像修复结果中存在的结构连续性和纹理清晰性较差的问题,提出了一种基于自适应相似组的图像修复算法。区别于传统的以单一图像块或固定数目图像块作为修复单元的方法,该算法根据自然图像中纹理区和结构区的不同特点,自适应地选取不同数目的相似图像块,构造自适应相似组;然后以相似组作为基本单元,学习自适应字典,并构造基于稀疏表示的图像修复模型;最后,采用Split Bregman Iteration算法高效地求解目标代价函数。实验结果表明,与基于图像块的图像修复算法和图像块组稀疏表示(GSR)算法相比,该算法在峰值信噪比(PSNR)上平均提高了0.94~4.34 dB,在结构相似性指数(SSIM)上平均提高了0.0069~0.0345,同时,修复速度分别是对比算法的2.51倍和3.32倍

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133