全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合语义扩展和卷积神经网络的中文短文本分类方法

DOI: 10.11772/j.issn.1001-9081.2017.12.3498

Keywords: 新闻标题分类,语义扩展,卷积神经网络,同义词,语义组合

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 中文新闻标题通常包含一个或几十个词,由于字符数少、特征稀疏,在分类问题中难以提升正确率。为解决此问题,提出了基于Word Embedding的文本语义扩展方法。首先,将新闻标题扩展为(标题、副标题、主题词)构成的三元组,用标题的同义词结合词性过滤方法构造副标题,对多尺度滑动窗口内的词进行语义组合,提取主题词;然后,针对扩展文本构造卷积神经网络(CNN)分类模型,该模型通过max pooling及随机dropout进行特征过滤及防止过拟合;最后,将标题、副标题拼接为双词表示,与多主题词集分别作为模型的输入。在2017自然语言处理与中文计算评测(NLP&CC2017)的新闻标题分类数据集上进行实验。实验结果表明,用三元组扩展结合相应的CNN模型在18个类别新闻标题上分类的正确率为79.42%,比未经扩展的CNN模型提高了9.5%,且主题词扩展加快了模型的收敛速度,验证了三元组扩展方法及所构建CNN分类模型的有效性

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133