全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于位置的非对称相似性度量的协同过滤推荐算法

DOI: 10.11772/j.issn.1001-9081.2016.01.0171

Keywords: 协同过滤,基于位置服务,个性化推荐,位置感知,基于位置的用户相似性

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 为提升推荐系统的准确率,针对传统协同过滤(CF)推荐算法没有有效使用位置信息的问题,提出了一种基于位置的非对称相似性度量的协同过滤推荐算法(LBASCF)。首先,分别利用用户-商品评分矩阵和用户历史消费位置,计算出用户间的余弦相似性和基于位置的非对称相似性;其次,将余弦相似性与基于位置的相似性融合,得到一个新的非对称用户相似性,融合后的相似性能够同时反映用户在位置上和兴趣上的偏好;最后,根据用户的最近邻居对商品的评分向用户推荐新的商品。用某点评数据集和Foursquare数据集对算法的有效性进行了评估。在某点评数据集实验结果证明,与CF相比,LBASCF的召回率和精确率分别提高了1.64%和0.37%;与位置感知协同过滤推荐系统(LARS)方法比较,LBASCF的召回率和精确率分别提高了1.53%和0.35%。实验结果表明,LBASCF相对于CF和LARS在基于位置服务的应用中能够有效提高系统的推荐质量

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133