|
计算机应用 2018
含交叉项的混合二范数粒子群优化算法DOI: 10.11772/j.issn.1001-9081.2018010257 Keywords: 粒子群优化算法,差分进化算法,群体智能,二范数,基准函数 Abstract: 摘要 针对原始粒子群优化算法(PSO)在搜索过程中容易陷入局部最优点的问题,并尽量避免破坏种群多样性,提出一种含交叉项的混合二范数粒子群优化算法HTPSO。首先,利用二范数原理计算当前粒子与个体历史最优粒子间的欧氏距离;其次,将欧氏距离引入速度迭代公式以影响社交项对粒子速度的作用,并按照一定规律随机分布惯性权重;最后,在此基础上简化粒子群算法,并将差分进化(DE)算法中的交叉算子融入该算法中,使粒子能在一定概率下与个体历史最优粒子交叉。为了验证HTPSO的性能,与利用正弦函数改进惯性权重的粒子群优化算法(SinPSO)、自适应粒子群优化算法(SelPSO)、基于自适应惯性权重的均值粒子群优化算法(MAWPSO)和简化粒子群优化算法(SPSO)在不同维度下解决8个常用基准函数,并根据T-test、成功率和平均迭代次数分析了各算法的优化结果。实验结果表明,HTPSO具有较优秀的收敛能力,且粒子运动非常灵活
|