|
计算机应用 2018
局部关注支持向量机算法DOI: 10.11772/j.issn.1001-9081.2017092228 Keywords: 非均衡数据集,支持向量机,集成算法,非监督聚类 Abstract: 摘要 针对训练数据集的不均衡性这一问题,结合采样方法和集成方法,提出一种集成支持向量机分类算法。该算法首先对不均衡的训练集进行非监督聚类;然后依靠其底层的局部关注支持向量机进行数据集局部划分,以精确把控数据集间的局部特征;最后通过顶层支持向量机进行分类预测。在UCI数据集上的评测结果显示,该算法与当前流行的算法(如基于采样的核化少数类过采样技术(K-SMOTE)、基于集成的梯度提升决策树(GTB)和代价敏感集成算法(AdaCost)等)相比,分类效果有明显提升,能在一定程度上解决数据集的不均衡问题
|