全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

局部关注支持向量机算法

DOI: 10.11772/j.issn.1001-9081.2017092228

Keywords: 非均衡数据集,支持向量机,集成算法,非监督聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对训练数据集的不均衡性这一问题,结合采样方法和集成方法,提出一种集成支持向量机分类算法。该算法首先对不均衡的训练集进行非监督聚类;然后依靠其底层的局部关注支持向量机进行数据集局部划分,以精确把控数据集间的局部特征;最后通过顶层支持向量机进行分类预测。在UCI数据集上的评测结果显示,该算法与当前流行的算法(如基于采样的核化少数类过采样技术(K-SMOTE)、基于集成的梯度提升决策树(GTB)和代价敏感集成算法(AdaCost)等)相比,分类效果有明显提升,能在一定程度上解决数据集的不均衡问题

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133