全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多模态信息融合的新闻图像人脸标注

DOI: 10.11772/j.issn.1001-9081.2017.10.3006

Keywords: 新闻图像,人脸标注,K近邻算法,多模态信息,反向传播神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对传统新闻图像中人脸标注方法主要依赖人脸相似度信息,分辨噪声和非噪声人脸能力以及非噪声人脸标注能力较差的问题,提出一种基于多模态信息融合的新闻图像人脸标注方法。首先根据人脸和姓名的共现关系,利用改进的K近邻算法,获得基于人脸相似度信息的人脸姓名匹配度;然后,分别从图像中提取人脸大小和位置的信息对人脸重要程度进行表征,从文本中提取姓名位置信息对姓名重要程度进行表征;最后,使用反向传播神经网络来融合上述信息完成人脸标签的推理,并提出一个标签修正策略来进一步改善标注结果。在Label Yahoo! News数据集上的测试效果表明,所提方法的标注准确率、精度和召回率分别达到了77.11%、73.58%和78.75%,与仅基于人脸相似度的算法相比,具有较好的分辨噪声和非噪声人脸能力以及非噪声人脸标注能力

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133