全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于MAP+CMLLR的说话人识别中发声力度问题

DOI: 10.11772/j.issn.1001-9081.2017.03.906

Keywords: 说话人识别,发声力度,最大后验概率,最大似然线性回归,约束最大似然线性回归

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 为了改善发声力度对说话人识别系统性能的影响,在训练语音存在少量耳语、高喊语音数据的前提下,提出了使用最大后验概率(MAP)和约束最大似然线性回归(CMLLR)相结合的方法来更新说话人模型、投影转换说话人特征。其中,MAP自适应方法用于对正常语音训练的说话人模型进行更新,而CMLLR特征空间投影方法则用来投影转换耳语、高喊测试语音的特征,从而改善训练语音与测试语音的失配问题。实验结果显示,采用MAP+CMLLR方法时,说话人识别系统等错误率(EER)明显降低,与基线系统、最大后验概率(MAP)自适应方法、最大似然线性回归(MLLR)模型投影方法和约束最大似然线性回归(CMLLR)特征空间投影方法相比,MAP+CMLLR方法的平均等错率分别降低了75.3%、3.5%、72%和70.9%。实验结果表明,所提出方法削弱了发声力度对说话人区分性的影响,使说话人识别系统对于发声力度变化更加鲁棒

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133