全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于显著性语义区域加权的图像检索算法

DOI: 10.11772/j.issn.1001-9081.2018051150

Keywords: 图像检索,卷积神经网络,深度特征显著性,语义区域加权,特征聚合

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对计算视觉领域图像实例检索的问题,提出了一种基于深度卷积特征显著性引导的语义区域加权聚合方法。首先提取深度卷积网络全卷积层后的张量作为深度特征,并利用逆文档频率(IDF)方法加权深度特征得到特征显著图;然后将其作为约束,引导深度特征通道重要性排序以提取不同特殊语义区域深度特征,排除背景和噪声信息的干扰;最后使用全局平均池化进行特征聚合,并利用主成分分析(PCA)降维白化得到图像的全局特征表示,以进行距离度量检索。实验结果表明,所提算法提取的图像特征向量语义信息更丰富、辨识力更强,在四个标准的数据库上与当前主流算法相比准确率更高,鲁棒性更好

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133