|
计算机应用 2019
面向高速公路大数据的短时流量预测方法DOI: 10.11772/j.issn.1001-9081.2018071665 Keywords: 交通流量,短时预测,K近邻,时空数据,大数据 Abstract: 摘要 针对高速公路传统的短时交通流预测方法适用数据规模小、全网预测效率较低、数据的时空关系被忽视等问题,提出一种结合了K近邻(KNN)模型且面向高速大数据的短时交通流预测方法。首先,对模型的K值和距离度量进行调优,利用交叉验证进行模型参数的对比实验;然后,考虑数据内在的业务时空关联,建模基于时空特性的特征向量;最后,在大数据环境下建立回归预测模型,以最优参数的模型实现预测。实验结果表明,与传统时间序列模型相比,所提方法一次可预测出全站点的流量,单次运行速度快,效率提高了77%,平均绝对百分比误差(MAPE)和绝对百分比误差中位数(MDAPE)均有明显减低,且具有良好的水平扩展性
|