全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双并行结构优化的极限学习机及其在回归数据集中的应用

Keywords: 极限学习机, 单隐含层前馈神经网络, 神经网络, 回归

Full-Text   Cite this paper   Add to My Lib

Abstract:

极限学习机(ELM)发展自单隐含层前馈神经网络算法,其理论简单,运行快速,应用非常广泛.为了提高ELM的泛化性能,提出了一种带有双并行结构的优化ELM算法(DP-ELM).在DP-ELM中,建立输入层和输出层间特殊的连接,使得DP-ELM的输出节点不仅可以接收隐含层节点的信息,也可直接接收输入节点的自信息.利用3组回归数据集验证算法性能,实验结果证明,与ELM相比,DP-ELM可以达到更好的回归精度以及更稳定的泛化能力

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133