全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

集成改进KNN算法预测蛋白质亚细胞定位

DOI: 10.13345/j.cjb.160389

Keywords: 亚细胞区间,蛋白序列特征,K-nearest neighbor,basic local alignment search tool,Adaboost

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于Adaboost算法对多个相似性比对K最近邻 (K-nearest neighbor,KNN) 分类器集成实现蛋白质的亚细胞定位预测。相似性比对KNN算法分别以氨基酸组成、二肽、伪氨基酸组成为蛋白序列特征,在KNN的决策阶段使用Blast比对决定蛋白质的亚细胞定位。在Jackknife检验下,Adaboost集成分类算法提取3种蛋白序列特征,3种特征在数据集CH317和Gram1253的最高预测成功率分别为92.4%和93.1%。结果表明Adaboost集成改进KNN分类预测方法是一种有效的蛋白质亚细胞定位预测方法

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133