全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Comparative Study of Least Square Methods for Tuning CCIR Pathloss Model

Keywords: Pathloss, Propagation Model, CCIR Model, Composition Function, Empirical Model, RMSE-Based Tuning Approach, Least Square Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

Comparative study of two least square methods for tuning CCIR pathloss model is presented. The first model tuning approach is implemented by the addition or subtraction of the root mean square error (RMSE) based on whether the sum of errors is positive or negative. The second method is implemented by addition of a composition function of the residue to the original CCIR model pathloss prediction. The study is based on field measurement carried out in a suburban area for a GSM network in the 1800 MHz frequency band. The results show that the untuned CCIR model has a root mean square error (RMSE) of 17.33 dB and prediction accuracy of 85.33%. On the other hand, the pathloss predicted by the RMSE tuned CCIR model has RMSE of 4.09dB and prediction accuracy of 96.82% while the pathloss predicted by the composition function tuned CCIR model has RME of 2.15 dB and prediction accuracy of 98.39%. In all, both methods are effective in minimizing the error to within the acceptable value of less than 7 dB. However, the composition function approach has better pathloss prediction performance with smaller RMSE and higher prediction accuracy than the RMSE-based approach.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133