|
- 2017
An Artificial Neural Network Approach for Predicting Kinematics in Handball ThrowsKeywords: Neural Networks, Biomechanics, Prediction Abstract: The purpose of this study was to test a new method to predict the kinematics of center of mass (COM) during the take-off phase of the handball shot by mean of multilayer perceptron neural networks (MLPs) based on data from only the force platform. Ten trials’ of handball jump shot data from the force platform were obtained. The kinetic data of jump shot trials (force, impulse, and work) were used to feed the net and the data from the force platform kinematics (acceleration, velocity, and displacement) was used to evaluate the production data of the MLP neural network model. A commercial artificial neural network software was used to predict the target kinematic parameters (NeuroDimension, 2014?). The Pearson correlations of all Kinetics parameters between the original and production data was >0.99. The MLPs model successfully predicted the target kinematics depending on kinetics in the handball jump shot under the conditions of this study.
|