|
Modern Chemistry 2018
Synthesis, Surface Activities and Anti-Bacterial Activity of (Copper and Nickel) Nanoparticles Stabilized by Cationic Thiol Polyurethane SurfactantsKeywords: Cationic Surfactants, Micellization, Adsorption, Surface Properties, Polyurethane, Antimicrobial Activity Abstract: A series of cationic polyurethane surfactant [PQ14, PQ16 and PQ18] were synthesized by the reaction of alkyl bromoacetate (namely: tetradecyl-, hexadecyl- and octadecyl bromoacetate) as quaternizing agents and modified polyurethane contains tertiary amine species. Modified polyurethane was prepared by the reaction of toluene diisocyanate (TDI) and Triethanol amine mono mercaptoacetate. Grinding method is used to synthesize copper and nickel nanoparticles which stabilized by Cationic Thiol polyurethane surfactants. The chemical structures of the prepared surfactants were confirmed using elemental analysis, FTIR, UV and 1H-NMR spectroscopy. The molecular weight measurements of the prepared polymers showed that the segments of each polymer contain average 10 units of the urethane-Triethanol amine mercaptoacetate. The surface activities of the prepared surfactants including: surface tension (g), effectiveness (πcmc), concentration at micelle formation (CMC), efficiency (Pc20), maximum concentration at the interface (Gmax), average area occupied by each surfactant molecule at the interface at equilibrium (Amin) of surfactants solutions were established at 25°C. The surface tension and the critical micelle concentration values of the prepared surfactants were gradually decreased by the gradual increase of their alkyl chain length. Antimicrobial activity of the synthesized cationic surfactants and their nanostructure with copper and nickel nanoparticles were evaluated against pathogenic bacteria and fungi. The antimicrobial activity showed the enhancement in the antimicrobial activity of the synthesized cationic surfactants in the nanostructures form
|