|
- 2018
Improvement of Antioxidative Defense of Cells Exposed to Radio Frequencies by a Nanotechnology DeviceKeywords: Nanocrystals, Quantum Dots, Electromagnetic Field, Pisum sativum, Saccharomyces cerevisiae Abstract: Transfer of an electromagnetic activity from a complex biological system, to another complex system is present both in current life and in quantum physics studies. Chlorophyll photosynthesis, is a typical model of an interaction between electromagnetic fields, deriving from solar energy and elements of a biochemical nature, the chlorophyll, responsible for the energy production, as a process deriving from chemical transformation. The following report presents a series of evidences, collected by means of various experimental approaches, aimed at demonstrating that by inducing the electromagnetic activity of an active substance on an electric field in stationary conditions, a quantum variation of the electric field can be obtained. Such electric field, is transferred to a support of fluorescent nanocrystals called "Quantum Dots", whose electronic structure is suitable to maintain the starting quantum characteristics stable. The application of patches containing the aforementioned nanocrystals, on two biological models: Saccharomyces cerevisiae colonies and Pisum sativum plants, exposed to the irradiation of specific routers, showed a protective activity of these patches, evidenced by a regular increase in antioxidative defense and cell proliferation. The results reported in this research suggest the possibility of application of patchs supporting fluorescent nanocrystals as an effective defense against the production of reactive oxygen species
|