全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Comparative study on dimensionality reduction for disease diagnosis using fuzzy classifier

DOI: 10.14419/ijet.v7i1.8652

Full-Text   Cite this paper   Add to My Lib

Abstract:

Machine learning is the worldwide recent research technique for various systems as they are intelligent enough to find the solution for classification and prediction problems. The proposed work is about a hybrid genetic fuzzy algorithm that performs an optimal search as well as classification upon uncertain data. The data which is uncertain is suitable for fuzzy classifiers to predict the disease. The hybrid genetic fuzzy system applied on the attributes selects relevant attributes. The selected attributes are fed into the fuzzy classifier. The fuzzy rules are again generated using genetic algorithms. This algorithm is applied on three of the important and bench marking data sets taken from the UCI machine learning repository. The heart disease, Wisconsin breast cancer and Pima Indian diabetes datasets produce classification accuracy as 89.65%, 99.5% and 88.93% respectively. In this article there is a comparative study on few of the feature selection and feature reduction techniques.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133