The results of a comparative literature analysis of internal electrical noises and signal-to-noise ratio for nanoscale BioFET (biological field-effect transistor) and DNA (deoxyribonucleic acid) sensors based on different architectures MIS (metal-insulator-semiconductor), EIS (electrolyte-insulator-semi-conductor) and ISFET (ion-selective field-effect transistor) are presented. Main types, models and mechanisms of internal noises of bio- & chemical field-effect based sensors are analyzed, summarized and presented. For the first time, corresponding detail electrical equivalent circuits were built to calculate the spectral densities of noises generated in the active part of a solid (semiconductor, dielectric) and in an aqueous solution for MIS, EIS and ISFET structures based sensors. Complete expressions are obtained for the rms (root mean square) value of the noise current (or voltage), as well as the noise spectral densities for the architectures under study. The miniaturization of biosensors leads to a decrease in the level of the useful signal-current. For successful operation of the sensor, it is necessary to ensure a high value of the SNR (signal-to-noise ratio). In case of weak useful signals, it is necessary to reduce the level of internal electrical noise. This work is devoted to a detailed study of the types and mechanisms of internal electrical noises in specific biosensor architectures.
References
[1]
Gasparyan, L., Mazo, I., Simonyan, V. and Gasparyan, F. (2019) DNA Sequencing: Current State and Prospects of Development. Open Journal of Biophysics, 9, 169-197. https://doi.org/10.4236/ojbiphy.2019.93013
[2]
Gasparyan, L., Mazo, I., Gasparyan, F. and Simonyan, V. (2020) DNA Sequencing Modified Method through Effective Regulation of Its Translocation Speed in Aqueous Solution. Open Journal of Biophysics, 10, 96-112. https://doi.org/10.4236/ojbiphy.2020.102009
[3]
Gasparyan, L., Mazo, I., Simonyan, V. and Gasparyan, F. (2020) Noises and Signal-to-Noise Ratio of Nanosize EIS and ISFET Biosensors. Open Journal of Biophysics, 10, 1-12. https://doi.org/10.4236/ojbiphy.2020.101001
[4]
Hoogerheide, D.P., Garaj, S. and Golovchenko, J.A. (2009) Probing Surface Charge Fluctuations with Solid-State Nanopores. Physical Review Letters, 102, 256804-256810. https://doi.org/10.1103/PhysRevLett.102.256804
[5]
Pedone, D., Langecker, M., et al. (2010) Fabrication and Electrical Characterization of a Pore-Cavity-Pore Device. Journal of Physics: Condensed Matter, 22, Article ID: 454115. https://doi.org/10.1088/0953-8984/22/45/454115
[6]
Powell, M.R., Vlassiouk, I., Martens, C. and Siwy, Z.S. (2009) Nonequilibrium 1/f Noise in Rectifying Nanopores. Physical Review Letters, 103, Article ID: 248104. https://doi.org/10.1103/PhysRevLett.103.248104
[7]
Smeets, R.M.M., Dekker, N.H. and Dekker, C. (2009) Low Frequency Noise in Solid-State Nanopores. Nanotechnology, 20, Article ID: 095501. https://doi.org/10.1088/0957-4484/20/9/095501
[8]
Krems, M., Zwolak, M., et al. (2009) Effect of Noise on DNA Sequencing via Transverse Electronic Transport. Biophysical Journal, 97, 1990-1996. https://doi.org/10.1016/j.bpj.2009.06.055
[9]
Lagerqvist, J., Zwolak, M. and Di Ventra, M. (2006) Fast DNA Sequencing via Transverse Electronic Transport. Nano Letters, 6, 779-782. https://doi.org/10.1021/nl0601076
[10]
Zwolak, M. and Di Ventra, M. (2005) Electronic Signature of DNA Nucleotides via Transverse Transport. Nano Letters, 5, 421-424. https://doi.org/10.1021/nl048289w
[11]
Lagerqvist, J., Zwolak, M. and Di Ventra, M. (2007) Influence of the Environment and Probes on Rapid DNA Sequencing via Transverse Electronic Transport. Biophysical Journal, 93, 2384-2390. https://doi.org/10.1529/biophysj.106.102269
[12]
Lagerqvist, J., Zwolak, M. and Ventra, M.D. (2007) Comment on Characterization of the Tunneling Conductance across DNA Bases. Physical Review E, 76, Article ID: 013901. https://doi.org/10.1103/PhysRevE.76.013901
[13]
Gasparyan, L., Mazo, I., Simonyan, V. and Gasparyan, F. (2019) ISFET Based DNA Sensor: Current-Voltage Characteristic and Sensitivity to DNA Molecules. Open Journal of Biophysics, 9, 239-253. https://doi.org/10.4236/ojbiphy.2019.94017
[14]
Ventra, M.D. (2008) Electrical Transport in Nanoscale Systems. Cambridge University Press, Cambridge, UK.
[15]
Lee, M.-H., Kumar, A., Park, K.-B., Cho, S.-Y., et al. (2014) A Low-Noise Solid-State Nanopore Platform Based on a Highly Insulating Substrate. Scientific Reports, 4, Article No. 7448. https://doi.org/10.1038/srep07448
[16]
Fanget, A. (2013) Towards Tunneling Electrodes for Nanopore-Based DNA Sequencing. Thèse No. 5700, Ecole Polytechnique Fèdèrale de Lausanne, Suisse, 2013.
[17]
Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D. and Golovchenko, J.A. (2010) Graphene as a Subnanometre Trans-Electrode Membrane. Nature, 467, 190-193. https://doi.org/10.1038/nature09379
[18]
Merchant, C.A., Healy, K., Wanunu, M., et al. (2010) DNA Translocation through Graphene Nanopores. Nano Letters, 10, 2915-2921. https://doi.org/10.1021/nl101046t
[19]
Schneider, G.F., Kowalczyk, S.W., Calado, V.E., et al. (2010) DNA Translocation through Graphene Nanopores. Nano Letters, 10, 3163-3167. https://doi.org/10.1021/nl102069z
[20]
Wanunu, M., Dadosh, T., Ray, V., Jin, J., McReynolds, L. and Drndić, M. (2010) Rapid Electronic Detection of Probe-Specific microRNAs Using Thin Nanopore Sensors. Nature Nanotechnology, 5, 807-814. https://doi.org/10.1038/nnano.2010.202
[21]
Morikawa, T., Yokota, K., Tanimoto, S., Tsutsui, M. and Taniguchi, M. (2017) Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution. Sensors (Basel), 17, 885-891. https://doi.org/10.3390/s17040885
[22]
Morikawa, T., Yokota, K., Tsutsui, M. and Taniguchi, M. (2017) Fast and Low-Noise Tunneling Current Measurements for Single-Molecule Detection in an Electrolyte Solution Using Insulator-Protected Nanoelectrodes. Nanoscale, 9, 4076-4081. https://doi.org/10.1039/C6NR09278K
[23]
Das, M.P. and Bhuyan, M. (2013)Modeling of pH Dependent Electrochemical Noise in Ion Sensitive Field Effect Transistors ISFET. Sensors and Transducers, 149, 102-108. https://www.sensorsportal.com/HTML/DIGEST/P_1134.htm
[24]
Dean, M.J., Shinwari, M.W., Ranuárez, J.C. and Landheer, D. (2006) Noise Considerations in Field-Effect Biosensors. Journal of Applied Physics, 100, Article ID: 074703. https://doi.org/10.1063/1.2355542
[25]
Syu, Y., Hsu, W. and Linz, C. (2018) Review—Field-Effect Transistor Biosensing: Devices and Clinical Applications. ECS Journal of Solid State Science and Technology, 7, Q3196-Q3207. https://doi.org/10.1149/2.0291807jss
[26]
Bergveld, P. (1981) The Operation of an ISFET as an Electronic Device. Sensors and Actuators, 1, 17-29. https://doi.org/10.1016/0250-6874(81)80004-2
[27]
Hemmerli, A., Janata, J. and Brophy, J.J. (1982) Electrochemistry of Chemically Sensitive Field Effect Transistors. Journal of the Electrochemical Society, 129, 2306-2312. https://doi.org/10.1149/1.2123500
[28]
Barabash, R.P. and Cobbold, R.S.C. (1983) Basic Limitations of ISFET and Silicon Pressure Transducers: Noise Theory, Models and Device Scaling. Sensors and Actuators, 4, 427-438. https://doi.org/10.1016/0250-6874(83)85054-9
[29]
Yates, D.E., Levine, S. and Healy, T.W. (1974) Site-Binding Model of the Electrical Double Layer at the Oxide/Water Interface. Journal of the Chemical Society, Faraday Transactions, 70, 1807-1818. https://doi.org/10.1039/f19747001807
[30]
Abrahamian, Yu., Martirissyan, R., Gasparyan, F. and Kocharyan, K. (2004) Methods and Materials for Remote Sensing. Infrared Photo-Detectors, Radiometers and Arrays. Kluwer Academic Publishers, Boston/Dordrecht/New York/London. https://doi.org/10.1007/978-1-4419-9025-9
[31]
Van der Ziel, A. (1970) Noise Sources, Characterization, Measurements. Prentice-Hall, Englewood Cliffs, NJ.
[32]
Gasparyan, F.V. (2009) Photoresponse of LAPS with Different Species Membranes: Modeling and Simulation. Sensors & Transducers Journal, 111, 141-154.
[33]
Hassibi, A., Navid, R., Dutton, R.W. and Lee, T.H. (2004). Comprehensive Study of Noise Processes in Electrode Electrolyte Interfaces. Journal of Applied Physics, 96, 1074-1082. https://doi.org/10.1063/1.1755429
[34]
Hassibi, A., Zahedi, S., Navid, R., Dutton, R.W. and Lee, T.H. (2005) Biological Shot-Noise and Quantum-Limited Signal-to-Noise Ratio in Affinity-Based Biosensors. Journal of Applied Physics, 97, Article ID: 084701. https://doi.org/10.1063/1.1861970
[35]
Massobrio, G., Martinoa, S. and Grattarola, M. (1992) Light-Addressable Chemical Sensors: Modeling and Computer Simulations. Sensors and Actuators B: Chemical, 7, 484-487. https://doi.org/10.1016/0925-4005(92)80348-2
Johnston, I.G. (2012) The Chaos within: Exploring Noise in Cellular Biology. Significance, 19, 17-21. https://doi.org/10.1111/j.1740-9713.2012.00586.x
[38]
Kaern, M., Elston, T.R., Blake, W.J. and Collins, J.J. (2005) Stochasticity in Gene Expression: From Theories to Phenotypes. Nature Reviews Genetics, 6, 451-464. https://doi.org/10.1038/nrg1615
[39]
Maheshri, N. and O’Shea, E.K. (2007) Living with Noisy Genes: How Cells Function Reliably with Inherent Variability in Gene Expression. Annual Review of Biophysics and Biomolecular Structure, 36, 413-434. https://doi.org/10.1146/annurev.biophys.36.040306.132705
[40]
Breed, G. (2006) Noise and Spurious in Digital Systems and Digitized Signals. In: High Frequency Electronics, Summit Technical Media, LLC, 50-52. https://www.highfrequencyelectronics.com/Sep06/HFE0906_Tutorial.pdf
[41]
Heerema, S.J., Schneider, G.F., Rozemuller, M., Vicarelli, L., Zandbergen, H.W. and Dekker, C. (2015) 1/f Noise in Graphene Nanopores. Nanotechnology, 26, Article ID: 074001. https://doi.org/10.1088/0957-4484/26/7/074001
[42]
Chim, W.K., Leong, K.K. and Choi, W.K. (2001) Random Telegraphic Signals and Low-Frequency Noise in Rapid-Thermal-Annealed Silicon-Silicon Oxide Structures. Japanese Journal of Applied Physics, 40, 1-6. https://doi.org/10.1143/JJAP.40.1
[43]
Gasparyan, F.V., Melkonyan, S.V., Aroutiounyan, V.M. and Asriyan, H.V. (2000) 1/f Noises of Homopolar and Heteropolar Semiconductors. International Journal of Modern Physics B, 14, 751-760. https://doi.org/10.1142/S0217979200000637
[44]
Jakobson, C., Bloom, I. and Nemirovsky, Y. (1998) 1/f Noise in CMOS Transistors for Analog Applications from Subthreshold to Saturation. Solid-State Electronics, 42, 1807-1817. https://doi.org/10.1016/S0038-1101(98)00162-2
[45]
Hooge, F.N. (1969) 1/f Noise Is No Surface Effect. Physics Letters A, 29, 139-140. https://doi.org/10.1016/0375-9601(69)90076-0
[46]
Hooge, F.N., Kleinpenning, T.G.M. and Vandamme, L.K.J. (1981) Experimental Studies on 1/f Noise. Reports on Progress in Physics, 44, 479-532. https://doi.org/10.1088/0034-4885/44/5/001
[47]
Hooge, F.N. (1994) 1/f Noise Sources. IEEE Transactions on Electron Devices, 41, 1926-1935. https://doi.org/10.1109/16.333808
[48]
Hung, K.K., Ko, P.K., Hu, C. and Cheng, Y.C. (1990) A Unified Model for the Flicker Noise in Metal-Oxide-Semiconductor Field-Effect Transistors. IEEE Transactions on Electron Devices, 37, 654-665. https://doi.org/10.1109/16.47770
[49]
Melkonyan, S.V., Gasparyan, F.V., Aroutiounyan, V.M. and Asriyan, H.V. (1998) Temperature Chaos and the Lattice Character of the Hooge Parameter in Semi-conductors. Modern Physics Letters B, 12, 1245-1254. https://doi.org/10.1142/S0217984998001475
[50]
Melkonyan, S.V., Gasparyan, F.V., Aroutiounian, V.M. and Korman, C.E. (2003) Current Carrier Mobility Fluctuations in Homogeneous Semiconductors. SPIE’s First International Symposium on Fluctuations and Noise, 5115, 412-420.
[51]
Melkonyan, S.V., Gasparyan, F.V., Aroutiounian, V.M. and Asriyan, H.V. (2005). 1/f-Type Noise in View of Phonons Interface Percolation Dynamics. AIP Conference Proceedings, 780, 87-91. https://doi.org/10.1063/1.2036705
[52]
Melkonyan, S.V., Aroutiounian, V.M., Gasparyan, F.V. and Korman, C.E. (2005) Peculiarities of Electron Distribution Function’s Fluctuations Damping in Homogeneous Semiconductors. Physica B: Condensed Matter, 357, 398-407. https://doi.org/10.1016/j.physb.2004.12.004
[53]
Melkonyan, S.V., Aroutiounian, V.M., Gasparyan, F.V. and Asriyan, H.V. (2006) Phonon Mechanism of Mobility Equilibrium Fluctuation and Properties of 1/f-Noise. Physica B: Condensed Matter, 382, 65-70. https://doi.org/10.1016/j.physb.2006.01.521
[54]
Melkonyan, S.V., Gasparyan, F.V. and Asriyan, H.V. (2007) Main Sources of Electron Mobility Fluctuations in Semiconductors. SPIE Fourth International Symposium on Fluctuations and Noise, 6600, 66001K.
[55]
Peransin, J.-M., Vignaud, P., Rigaud, D. and Vandamme, L.K.J. (1990) l/f Noise in MODFETs at Low Drain Bias. IEEE Transactions on Electron Devices, 37, 2250-2253. https://doi.org/10.1109/16.59916
[56]
McWhorter, A.L. (1957) 1/f Noise and Germanium Surface Properties. In: Kingston, R.H., Ed., Semiconductor Surface Physics, University of Pennsylvania Press, Philadelphia, 207-228.
[57]
Hooge, F.N. (2004) 1/f Noise Sources. In: Sikula, J. and Levinshtein, M., Eds., Advanced Experimental Methods for Noise Research in Nanoscale Electronic Devices. NATO Science Series II: Mathematics, Physics and Chemistry (II. Mathematics, Physics and Chemistry), Vol. 151, 3-10. https://doi.org/10.1007/1-4020-2170-4_1
[58]
Männik, J., Heller, I., Janssens, A.M., Lemay, S.G. and Dekker, C. (2008) Charge Noise in Liquid-Gated Single-Wall Carbon Nanotube Transistors. Nano Letters, 8, 685-688. https://doi.org/10.1021/nl073271h
[59]
Gasparyan, F.V., Vitusevich, S.A., Offenhäusser, A. and Schöning, M.J. (2011) Modified Charge Fluctuation Noise Model for Electrolyte-Insulator-Semiconductor Devices. Modern Physics Letters B, 25, 831-840. https://doi.org/10.1142/S0217984911026103
[60]
Hooge, F.N. (1976) Discussion of Recent Experiments on 1/f Noise. Physica, 60, 130-144. https://doi.org/10.1016/0031-8914(72)90226-1
[61]
Vandamme, L.K.J. and de Werd, H.M.M. (1980) 1/f Noise Model for MOSTs Biased in the Nonohmic Region. Solid-State Electronics, 23, 325-329. https://doi.org/10.1016/0038-1101(80)90199-9
[62]
Hooge, F.N. and Vandamme, L.K.J. (1978) Lattice Scattering Causes 1/f Noise. Physics Letters A, 66, 315-316. https://doi.org/10.1016/0375-9601(78)90249-9
[63]
Gasparyan, F.V., Poghossian, A., Vitusevich, S.A., et al. (2009) 1/f-Noise in EIS Bio-Sensors Functionalized with 3 Layer-by-Layer PAMAM/Single Walled Carbon Nanotubes. Proceedings of the 20th International Conference on Noise and Fluctuation, Pisa, Italy, 14-19 June 2009, 133-136.
[64]
Gasparyan, F.V., Poghossian, A., Vitusevich, S.A., et al. (2011) Low-Frequency Noise in Field-Effect Devices Functionalized with Dendrimer/Carbon-Nanotube Multilayers. IEEE Sensors Journal, 11, 142-149. https://doi.org/10.1109/JSEN.2010.2052355
[65]
Christensson, S., Lundstrom, I. and Svensson, C. (1968) Low Frequency Noise in MOS Transistors—I. Theory. Solid-State Electronics, 11, 797-812. https://doi.org/10.1016/0038-1101(68)90100-7
[66]
Christensson, S. and Lundstrom, I. (1968) Low Frequency Noise in MOS Transistors—II. Experiments. Solid-State Electronics, 11, 813-820. https://doi.org/10.1016/0038-1101(68)90101-9
[67]
Reimbold, G. (1984) Modified 1/f Trapping Noise and Experiments in MOS Transistors Biased from Weak to Strong Inversion—Influence of Interface States. IEEE Transactions on Electron Devices, 31, 1190-1198. https://doi.org/10.1109/T-ED.1984.21687
[68]
Vandamme, L.K.J., Li, X. and Rigaud, D.M. (1994) 1/f Noise in MOS Devices, Mobility or Number Fluctuations? IEEE Transactions on Electron Devices, 41, 1936-1945. https://doi.org/10.1109/16.333809
[69]
Jacobson, C.G. and Nemirovsky, Y. (1999) 1/f Noise in Ion Sensitive Field Effect Transistor from Subthreshold to Saturation. IEEE Transactions on Electron Devices, 46, 259-261. https://doi.org/10.1109/16.737468
[70]
Kaisti, M. (2017) Detection Principles of Biological and Chemical FET Sensors. Biosensors and Bioelectronics, 98, 437-448. https://doi.org/10.1016/j.bios.2017.07.010
[71]
Zagni, N., Pavan, P. and Alam, M.A. (2019) Two-Dimensional MoS2 Negative Capacitor Transistors for Enhanced (Super Nernstian) Signal-to-Noise Performance of Next-Generation Nano Biosensors. Applied Physics Letters, 114, Article ID: 233102. https://doi.org/10.1063/1.5097828
[72]
McAndrew, C.C., Coram, G., Blaum, A. and Pilloud, O. (2005) Correlated Noise Modeling and Simulation. NSTI-Nanotech 2005, 40-45. https://www.semanticscholar.org/paper/Correlated-Noise-Modeling-and-Simulation-McAndrew- Coram/579c166296242367f12f5b98071c9b515f7fc9ad
[73]
Brederlow, R., Weber, W., et al. (1998) A Physically Based Model for Low-Frequency Noise of Poly-Silicon Resistors. International Electron Devices Meeting 1998, 6-9 December 1998, San Francisco, CA, 89-92. https://doi.org/10.1109/IEDM.1998.746286
[74]
Tsividis. Y. (1999) Operation and Modeling of the MOS Transistor. 2nd Edition, McGraw-Hill, New York.
[75]
Taur, Y. and Ning, T.H. (2009) Fundamentals of Modern VLSI Devices. 2nd Edition, Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139195065
[76]
Meixner, L.K. and Koch, S. (1992) Simulation of ISFET Operation Based on the Site-Binding Model. Sensors and Actuators B: Chemical, 6, 315-318. https://doi.org/10.1016/0925-4005(92)80077-B
[77]
Jin, B., Lee, G.-Y., Park, C., Kim, D., Choi, W., Yoo, J.-W., Pyun, J.-C. and Lee, J.-S. (2018) Electrical Characteristics and pH Response of a Parylene-H Sensing Membrane in a Si-Nanonet Ion-Sensitive Field-Effect Transistor. Sensors, 18, 3892. https://doi.org/10.3390/s18113892
[78]
Haartman, M.V. and Ostling, M. (2007) Low-Frequency Noise in Advanced MOS Devices. Springer, Berlin/Heidelberg, Germany, 216. https://doi.org/10.1007/978-1-4020-5910-0
[79]
Gasparyan, F. (2010) Excess Noises in (Bio-)Chemical Nanoscale Sensors. Sensors & Transducers Journal, 122, 72-84. https://www.sensorsportal.com/HTML/DIGEST/november_2010/P_711.pdf
[80]
Gasparyan, F.V. (2013) Chapter 11: Noise Reduction in (Bio-)Chemical Sensors Functionalized with Carbon Nanotube Multilayers. In: Vaseashta, A. and Khudaverdyan, S., Eds., Advanced Sensors for Safety and Security, NATO Science for Peace and Security Series B: Physics and Biophysics, Springer, Dordrecht, 139-150. https://doi.org/10.1007/978-94-007-7003-4_11
[81]
Gasparyan, F., Zadorozhnyi, I., Khondkaryan, H., Arakelyan, A. and Vitusevich, S. (2018) Photoconductivity, pH-Sensitivity, Noise, and Channel Length Effects in Si Nanowire FET Sensors. Nanoscale Research Letters, 13, 87-96. https://doi.org/10.1186/s11671-018-2494-5
[82]
Vitusevich, S. and Gasparyan, F. (2011) Chapter 11: Low-Frequency Noise Spectroscopy at Nanoscale: Carbon Nanotube Materials and Devices. In: Marulanda, J.M., Ed., Carbon Nanotubes Applications on Electron Devices, IntechOpen Limited, London, 257-296. https://doi.org/10.5772/20026
[83]
Gasparyan, F.V., Asriyan, H.V., Melkonyan, S.V. and Korman, C.E. (2010) Method of 1/f Noise Reduction and Noise Level Manipulation in Semiconductor Based Devices. U.S. Patent Application for Letters Patent of the United States No. 61/332, 408.
[84]
Pavelka, J., Sikula, J., et al. (2002) Noise and Transport Characterization of Tantalum Capacitors. Microelectronics Reliability, 42, 841-847. https://doi.org/10.1016/S0026-2714(02)00013-6
[85]
Zhigal’skii, G.P., Putrya, M.G. and Fedorov, A.S. (1989) Effect of Silicon-Wafer Preoxidation on the Low-Frequency Noise of MIS Structures. Radiophysics and Quantum Electronics, 32, 862-868. https://doi.org/10.1007/BF01038815
[86]
Chertouk, M. and Chovet, A. (1996) Origins and Characterization of Low-Frequency Noise in GaAs MESFET’s Grown on InP Substrates. IEEE Transactions on Electron Devices, 43, 123-129. https://doi.org/10.1109/16.477602
[87]
Haartman, M.V. and Ostling, M. (2007) Effect of Channel Positioning on the 1/f Noise in Silicon-Oninsulator Metal-Oxide-Semiconductor Field-Effect Transistors. Journal of Applied Physics, 101, Article ID: 03456. https://doi.org/10.1063/1.2433772
[88]
Tian, H. and Gamal, A.E. (2001) Analysis of 1/f Noise in Switched MOSFET Circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48, 151-157. https://doi.org/10.1109/82.917783
[89]
Jomaah, J., Balestra, F. and Ghibaudo, G. (2005) Low Frequency Noise in Advanced Si Bulk and SOI MOSFETs. Journal of Telecommunications and Information Technology, 1, 24-33.