Satellites consist of different subsystems; one of them is the thermal control subsystem (TCS), which warranties the specified temperature settings of other subsystems and devices through satellite lifetime. Satellite Thermal modelling is performed by solving thermal budget equation, taking into consideration maximum and minimum external fluxes, and heat rejection from internal devices which fixed on the internal surface of the panel. To reach the optimum design for the thermal control of the panel (radiation surface areas and power of the electric heaters), the thermal analysis results should meet the design requirements, and the temperature ranges of each device or subsystem inside the satellite. Multilayer Insulation (MLI) is one of the most important passive elements of thermal control subsystem covered the satellite as a blanket consists of some layers from thin pressed Mylar or Kapton sheets. MLI is important to minimize the heat exchange between the inside (devices heat dissipation), and outside satellite (external heat fluxes). A parametric investigation is presented for an inclined satellite in Low Earth Orbit (LEO) at 650 km altitude, to study MLI covering area effect on panel thermal control design. Satellite thermal analysis is performed by Thermal desktop/SINDA FLUINT Software by decreasing and increasing MLI on the outer surfaces of the satellite, to ensure that the satellite electrical equipment temperatures maintained in the required ranges for normal operation.
References
[1]
Gilmore, D.G. (2002) Spacecraft Thermal Control Handbook, Vol. I: Funda Mental Technologies. 2nd Edition, The Aerospace Press, El Segundo. https://doi.org/10.2514/4.989117
[2]
Sutheesh, P.M. and Chollackal, A. (2018) Thermal Performance of Multilayer Insulation: A Review. IOP Conference Series: Materials Science and Engineering, 396, Article ID: 012061. https://doi.org/10.1088/1757-899X/396/1/012061
[3]
Alifanov, O.M., Nenarokomov, A.V. and Gonzalez, V.M. (2009) Study of Multilayer Thermal Insulation by Inverse Problems Method. Acta Astronautica, 65, 1284-1291. https://doi.org/10.1016/j.actaastro.2009.03.053
[4]
Bapat, S.L., Narayankhedkar, K.G. and Lukose, T.R. (1990) Experimental Investigations of Multilayer. Insulation Cryogenics, 30, 711-719. https://doi.org/10.1016/0011-2275(90)90235-5
[5]
Sun, K.W., Yang, Q.Z., Yang, Y., Wang, S., Xu, J.M., Liu, Q., et al. (2014) Thermal Characteristics of Multilayer Insulation Materials for Flexible Thin-Film Solar Cell Array of Stratospheric Airship. 2014, Article ID: 706308. https://doi.org/10.1155/2014/706308
[6]
Bapat, S.L., Narayankhedkar, K.G. and Lukose, T.R. (1990) Performance Prediction of Multilayer Insulation. Cryogenics, 30, 700-710. https://doi.org/10.1016/0011-2275(90)90234-4
[7]
Kim, T.Y., Hyun, B.-S., Lee, J.-J. and Rhee, J. (2013) Numerical Study of the Spacecraft Thermal Control Hardware Combining Solid Liquid Phase Change Material and a Heat Pipe. Aerospace Science and Technology, 27, 10-16. https://doi.org/10.1016/j.ast.2012.05.007
[8]
Wesley, J. (2012) Thermal Analysis of Low Layer Density Multilayer Insulation Test Results. AIP Conference Proceedings, 1434-1526. https://doi.org/10.1063/1.4707081
[9]
Mavromatidis, L.E., Bykalyuk, A., Mohamed, E.M., Michel, P. and Santamouris, M. (2012) Numerical Estimation of Air Gaps’ Influence on the Insulating Performance of Multilayer Thermal Insulation. Building and Environment, 49, 227-237. https://doi.org/10.1016/j.buildenv.2011.09.029
[10]
Ferziger, J.H. (1981) Numerical Methods for Engineering Applications. John Wiley and Sons, New York.
Kreith, F. (1976) Principles of Heat Transfer. 3rd Edition, Intext Educational Publishers, New York.
[13]
Williams, A. (2005) Robust Satellite Thermal Control Using Forced Air Convection Thermal Switches for Operationally Responsive Space Missions. Master’s Thesis, University of Colorado, Department of Aerospace Engineering Sciences, Boulder.
[14]
Lin, Y., Li, Q., Kong, L., Gu, S. and Zhang, L. (2019) Quasi-All-Passive Thermal Control System Design and On-Orbit Validation of Luojia 1-01 Satellite. Sensors, 19, Article No. 827. https://doi.org/10.3390/s19040827
[15]
Boushon, K.E. (2018) Thermal Analysis and Control of Small Satellites in Low Earth Orbit. Masters Theses, Missouri University of Science and Technology, Rolla.
[16]
Smith, G.D. (1978) Numerical Solution of Partial Differential Equations. Oxford University Press, Oxford.
[17]
Burnett, D.S. (1987) Finite Element Analysis. Addison-Wesley Publishing Co.
[18]
Siegel, R. and Howell, J.R. (1981) Thermal Radiation Heat Transfer. Hemisphere Publishing Corp., New York.
[19]
Lapidus, L. and Pinder, G.F. (1982) Numerical Solution of Partial Differential Equations in Science and Engineering. John Wiley and Sons, New York.
[20]
Karam, R.D. (1998) Satellite Thermal Control for Systems Engineering. American Institute of Aeronautics and Astronautics, Reston.
[21]
Cullimore, B.A. (2010) Computer Code SINDA ’85/FLUINT System Improved Numerical Differencing Analyzer and Fluid Integrator. Version 2.3 (Martin Marietta).
[22]
Berggren, A. (2015) Design of Thermal Control System for the Spacecraft MIST.