全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Applied Machine Learning Techniques on Selection and Positioning of Human Resources in the Public Sector

DOI: 10.4236/ojbm.2021.92030, PP. 536-556

Keywords: Selection, Positioning, Machine Learning, Assessment Algorithm, Classification

Full-Text   Cite this paper   Add to My Lib

Abstract:

Proper selection and positioning of employees is an important issue for strategic human resources management. Within this framework, the aim of the research conducted, was to investigate the most efficient machine learning techniques to support employees’ recruitment and positioning evaluation. Towards this aim, a series of tests were conducted based on classification algorithms concerning employees of the public sector, seeking to predict best fit in workplaces and allocation of employees. Based on the outcome of the administered tests, an algorithm model was built to assist the decision support system of employees’ recruitment and assessment. The primary findings of the present research could lead to the argument that the adoption of the Employees’ Evaluation for Recruitment and Promotion Algorithm Model (EERPAM) will significantly improve the objectivity of employees’ recruitment and positioning procedures.

References

[1]  Avdimiotis, S. (2016). Tacit Knowledge Management within Hospitality Establishments: Revealing the Body of the Iceberg. International Journal of Knowledge Management (IJKM), 12, 15-29.
https://doi.org/10.4018/IJKM.2016070102
[2]  Azar, A., Sebt, M. V., Ahmadi, P., & Rajaeian, A. (2013). A Model for Personnel Selection with a Data Mining Approach: A Case Study in a Commercial Bank. SA Journal of Human Resource Management, 11, Article No. 449.
https://doi.org/10.4102/sajhrm.v11i1.449
[3]  Becker, B. E., & Huselid, M. A. (2006). Strategic Human Resource Management: Where Do We Go from Here? Journal of Management, 32, 898-925.
https://doi.org/10.1177/0149206306293668
[4]  Boser, E., Guyon, I. M., & Vapnik, V. (1992). A Training Algorithm for Optimal Margin Classifiers. In D. Haussler (Ed.), Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory (pp. 144-152). Pittsburgh, PA: ACM Press.
https://doi.org/10.1145/130385.130401
[5]  Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/A:1010933404324
[6]  Chien, C.-F., & Chen, L.-F. (2008). Data Mining to Iimprove Personel Selection and Enhance Human Capital: A Case Study in High Technology Industry. Expert Systems with Applications, 34, 280-290.
https://doi.org/10.1016/j.eswa.2006.09.003
[7]  Collins, J. (2001). Good to Great: Why Some Companies Make the Leap... and Others Don’t. New York: Harper Collins Publishers Inc.
[8]  Deshpande, S., Bhat, S., Pawar, S., Srivastava, R., & Palshikar, G. K. (2007). iTAG: Analytics for Talent Acquisition (p. 10). Tata Research Development and Design Centre. Tata Consultancy Services.
[9]  Faliagka, E., Ramantas, K., Tsakalidis, A., & Tzimas, G. (2012). Application of Machine Learning Algorithms to an Online Recruitment System. ICIW 2012: The Seventh International Conference on Internet and Web Applications and Services, Stuttgart, 27 May-1 June 2012, 215-220.
[10]  Gaber, M., Zaslavsky, A., & Krishnaswamy, S. (2007). A Survey of Classification Methods in Data Streams. In C. Aggarwal (Ed.), Data Streams, Models and Algorithms (pp. 39-59). Berlin: Springer.
https://doi.org/10.1007/978-0-387-47534-9_3
[11]  Garcia, M. D. Y. P., Rodríguez, F. S., & Carmona, L. O. (2009). Validation of Questionnaires. Reumatología Clínica, 5, 171-177.
https://doi.org/10.1016/j.reuma.2008.09.007
[12]  Jankowski, N., & Grabczewski, K. (2008). Learning Machines. In J. Kacprzyk (Ed.), Studies in Fuzziness and Soft Computing (pp. 1-35). Berlin: Springer.
[13]  Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in My Hand: Who’s the Fairest in the Land? On the Interpretations, Illustrations, and Implications of Artificial Intelligence. Business Horizons, 62, 15-25.
https://doi.org/10.1016/j.bushor.2018.08.004
[14]  Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001). Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation, 3, 637-649.
https://doi.org/10.1162/089976601300014493
[15]  Khairina, D. M., Maharani, S., Ramadiani, R., & Hatta, H. R. (2017). Decision Support System for Admission Selection and Positioning Human Resources by Using Naive Bayes Method. Advanced Science Letters, 23, 2495-2497.
https://doi.org/10.1166/asl.2017.8653
[16]  Kolbjornsrud, V., Amico, R., & Thomas, R. J. (2016). How Artificial Intelligence Will Redefine Management. Harvard Business Review.
[17]  Kulkarni, S. B., & Che, X. (2019). Intelligent Software Tools for Recruiting. Journal of International Technology and Information Management, 28, Article 1.
https://scholarworks.lib.csusb.edu/jitim/vol28/iss2/1
[18]  Luo, Z., Liu, L., Yin, J., Li, Y., & Wu, Z. (2019). Latent Ability Model: A Generative Probabilistic Learning Framework for Workforce Analytics. IEEE transactions on knowledge and data engineering, 31, 923-937.
https://doi.org/10.1109/TKDE.2018.2848658
[19]  Maali, A., Mahdavi, M. A., & Gheshlaghi, R. (2016). Suitability of Sequence-Based Feature Vector for Classification Algorithm Improves Accuracy of Human Protein-Protein Interaction Prediction: A Red Blood Cell Case Study. Current Bioinformatics, 11, 291-300.
https://doi.org/10.2174/1574893610666151026215233
[20]  Mitakos, T. (2015). Management Informational Systems. Athens: Association of Greek Academic Libraries.
http://www.kallipos.gr
[21]  Mohammad, R., Thabtah, F., & McCluskey, L. (2015). Tutorial and Critical Analysis of Phishing Websites Methods. Computer Science Review Journal, 17, 1-24.
https://doi.org/10.1016/j.cosrev.2015.04.001
[22]  Moreno, E. M. O., de Luna, E. B., Gómez, M. D. C. O., & López, J. E. (2014). Structural Equations Model (SEM) of a Questionnaire on the Evaluation of Intercultural Secondary Education Classrooms. Suma Psicológica, 21, 107-115.
https://doi.org/10.1016/S0121-4381(14)70013-X
[23]  Murthy, S. K. (1998). Automatic Construction of Decision Trees from Data: A Multidisciplinary Survey. Data Mining and Knowledge Discovery, 2, 345-389.
https://doi.org/10.1023/A:1009744630224
[24]  Pampouktsi, P., Avdimiotis, S., & Avlonitis, M. (2020). A Human Resources’ Selection and 2-Way Positioning Evaluation System in Public Sector. Proceedings of International Conference on Contemporary Marketing Issues, Thessaloniki, 11-13 September 2020, 187-199.
[25]  Platt, J. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. Tech. Rep., Microsoft Research, Technical Report msr-tr-98-14.
[26]  Province, B. N. (2015). The Effects of Parameter Tuning on Machine Learning Performance in a Software Defect Prediction Context (p. 104). Graduate Theses, Dissertations, and Problem Reports 6457.
[27]  Quinlan, J. R. (1996). Bagging, Boosting and C4.5. In 13th National Conference on Artificial Intelligence (pp. 725-730). Portland, OR: AAAI Press.
[28]  Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd ed.). Upper Saddle River, NJ: Prentice Hall.
[29]  Scholkopf, B., Burges, C., & Smola, A. (1998). Advances in Kernel Methods Support Vector Machines. Cambridge, MA: MIT Press.
[30]  Thakur, G. S., Gupta, A., & Gupta, S. (2015). Data Mining for Prediction of Human Performance Capability in the Software-Industry. International Journal of Data Mining & Knowledge Management Process, 5, 53-64.
https://doi.org/10.5121/ijdkp.2015.5205
[31]  Varshney, K. R., Chenthamarakshan, V., Fancher, S. W., Wang, J., Fang, D., & Mojsilovic, A. (2014). Predicting Employee Expertise for Talent Management in the Enterprise. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 24-27 August 2014, 1729-1738.
https://doi.org/10.1145/2623330.2623337
[32]  Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Data Mining: Practical Machine Learning Tools and Techniques (4th ed.). Burlington, MA: Morgan Kaufmann.
[33]  Yu, S. C., & Hsu, W. H. (2013). Applying Structural Equation Modelling Methodology to Test Validation: An Example of Cyberspace Positive Psychology Scale. Quality & Quantity, 47, 3423-3434.
https://doi.org/10.1007/s11135-012-9730-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133