全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Quantum State Scenario for Biological Self-Replication

DOI: 10.4236/ojbiphy.2021.112005, PP. 159-176

Keywords: Self-Organization, Living Systems, Protein Conformations, Bifurcation, Curie-Weiss Spin Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

With the prevalent conception of self-replication (SR, a hallmark of living systems) as a non-equilibrium process subject to thermodynamic laws, a complementary approach derives the low energy quantum states arising from a Hamiltonian that appears to be specific for bio-systems by its containing some strongly binding terms. The bindings attract properties of the template (T) and the reactants to form a replicate (R). The criterion for SR that emerges from the theory is that second order (bi-linear) interaction terms between degrees of motion of T-R and the thermal bath dominate negatively over a linear self-energy term, and thereby provide a binding between the attributes of T and R. The formalism (reminiscent of the Kramers-Anderson mechanism for superexchange) is from first principles, but hinges on a drastic simplification by modelling the T, R and bath variables on interacting qubits and by congesting the attraction into a single (control) parameter. The development relies on further simplifying features, such as Random Phase Approximations and an Effective Hamiltonian formalism. The entropic balance to replication is considered and found to reside in the far surroundings.

References

[1]  Haken, H. (1983) Synergetics. An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology. 3rd Edition, Springer Verlag, Berlin.
[2]  Von Neumann, J. (1966) The Theory of Self-Reproducing Automata. University of Illinois Press, Urbana.
[3]  Freitas, M. and Merkle, R. (2004) Kinematic Self-Replicating Machines. Landes Bioscience, Austin.
[4]  Nigmatullin, R. and Prokopenko, M. (2020) Thermodynamic Efficiency of Interactions in Self-Organizing Systems.
[5]  Cougnon, F.B.L. and Sanders, J.K. (2012) Evolution of Dynamic Combinatorial Chemistry. Accounts of Chemical Research, 45, 2211-2221.
https://doi.org/10.1021/ar200240m
[6]  Moulin, E. and Giuseponne, N. (2011) Dynamic Combinatorial Self Replicating Systems. Topics in Current Chemistry, 322, 87-105.
https://doi.org/10.1007/128_2011_198
[7]  Alberts, B., Johnson, A., Lewis, J., et al. (2002) Molecular Biology of the Cell. Garland Science, New York.
[8]  Carnall, J.M.A., Waudby, C.A., Belenguer, A.M., Stuart, M.C.A. and Peyaralus, J.J.-P. (2010) Mechanosensitive Self-Replication Driven by Self-Organization. Science, 327, 1502-1506.
https://doi.org/10.1126/science.1182767
[9]  Camazin, S., Deneubourg, J.-L., Franks, N.R., et al. (2001) Self-Organization in Biological Systems. Princeton University Press, Princeton.
https://doi.org/10.1515/9780691212920
[10]  Karsenti, E. (2008) Self-Organization in Cell Biology: A Brief History. Nature Reviews Molecular Cell Biology, 9, 255-262.
https://doi.org/10.1038/nrm2357
[11]  Clixby, G. and Twyman, L. (2016) Self-Replicating Systems. Organic & Biomolecular Chemistry, 14, 4170-4184.
https://doi.org/10.1039/C6OB00280C
[12]  Le Vay, K., Weise, L.I., Libicher, K., Mascarenhas, J. and Mutschler, H. (2019) Templated Self-Replication in Biomimetic Systems. Advanced Biosystems, 3, Article ID: 1800313.
https://doi.org/10.1002/adbi.201800313
[13]  Zelinski, W.S. and Orgel, L.E. (1987) Autocatalytic Synthesis of a Tetranucleotide Analogue. Nature, 327, 346-347.
https://doi.org/10.1038/327346a0
[14]  Feng, Q., Park, T.K. and Rebek, J. (1992) Cross-Over Reaction between Synthetic Replication Yield Active and Reactive Recombinants. Science, 256, 1179-1180.
https://doi.org/10.1126/science.256.5060.1179
[15]  Luther, A., Brandsch, R. and von Kiederowski, G. (1998) Surface Promoted Replication and Exponential Amplification on DNA Analogues. Nature, 396, 245-248.
https://doi.org/10.1038/24343
[16]  Szosztak, J.W. (2012) The Eightfold Path to Non-Enzymatic RNA Replication. Journal of Systems Chemistry, 3, Article No. 2.
https://doi.org/10.1186/1759-2208-3-2
[17]  Liu, Y. and Sumpter, D.J.T. (2018) Mathematical Modeling Reveals Spontaneous Emergence of Self-Replication in Chemical Reaction Systems. Journal of Biological Chemistry, 293, 18854-18863.
[18]  Hordijk, W., Steel, M. and Kauffman, S. (2012) The Structure of Autocatalytic Sets: Evolvability, Enablement, and Emergence. Acta Biotheoretica, 60, 379-392.
https://doi.org/10.1007/s10441-012-9165-1
[19]  Schrödinger, E. (1944) What Is Life? The Physical Aspect of Living Cell. University Press, Cambridge.
[20]  Kramers, H.A. (1934) L’interaction entre les atomes magnétogénes dans un cristal paramagnétique. Physica, 1, 182-192.
https://doi.org/10.1016/S0031-8914(34)90023-9
[21]  Anderson, P.W. (1950) Antiferromagnetism. Theory of Superexchange Interaction. Physical Review, 79, 350-358.
https://doi.org/10.1103/PhysRev.79.350
[22]  Srednicki, M. (1994) Chaos and Quantum Thermalization. Physical Review E, 50, 888-892. https://doi.org/10.1103/PhysRevE.50.888
[23]  Deutsch, J.M. (1991) Eigenstate Thermalisation Hypothesis. Physical Review A, 43, 2046-2049.
[24]  Bernal, J.D. (1951) The Physical Base of Life. Routledge and Kegan Paul, London.
[25]  Prigogine, I. (1975) Dissipative Structures, Dynamics and Entropy. International Journal of Quantum Chemistry, 9, 443-456.
https://doi.org/10.1002/qua.560090854
[26]  Dyson, F. (1980) Origins of Life. Cambridge University Press, Cambridge.
[27]  Ruelle, D. (2017) The Origin of Life Seen from the Point of View of Non-Equilibrium Statistical Mechanics.
[28]  England, J.L. (2015) Dissipative Adaptation in Driven Self-Assembly. Nature Nanotechnology, 10, 919-923.
https://doi.org/10.1038/nnano.2015.250
[29]  England, J.L. (2013) Statistical Physics of Self-Replication. The Journal of Chemical Physics, 139, 1219-1223.
https://doi.org/10.1063/1.4818538
[30]  Ruelle, D. (2015) Biology and Nonequilibrium: Remarks on a Paper by J. England, with a Remark by P. Gaspard. European Physics Journal Special Topics, 224, 935-945. https://doi.org/10.1140/epjst/e2015-02437-4
[31]  Duboniou, D., Caratzoulas, S., Kalyanaraman, C., Mincer, J.S. and Schwartz, S.D. (2009) Barrier Passage and Protein Dynamics in Enzymatically Catalyzed Reactions. European Journal of Biochemistry, 269, 3103-3112.
https://doi.org/10.1046/j.1432-1033.2002.03021.x
[32]  Englman, R. and Jortner, J. (1970) The Energy Gap Law for Radiationless Transitions in Large Molecules. Molecular Physics, 18, 145-164.
https://doi.org/10.1080/00268977000100171
[33]  Englman, R. and Yahalom, A. (2015) Open Systems’ Density Matrix Properties in a Time Coarsened Formalism. Foundations of Physics, 45, 673-690.
https://doi.org/10.1007/s10701-015-9894-5
[34]  Ptaszyncki, K. and Esposito, M. (2019) Entropy Production in Open Systems: The Predominant Role of Intra-Environmental Correlations. Physical Review Letters, 123, Article ID: 200603. https://doi.org/10.1103/PhysRevLett.123.200603
[35]  Ptaszyncki, K. and Esposito, M. (2020) Post-Thermalization via Information Stretching in Open Systems.
[36]  Ansari, A., Berendsen, J., Browne, S.F., Frauenfelder, H., et al. (1985) Protein States and Protein Quakes. Proceedings of the National Academy of Sciences, 82, 5000-5004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133