全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Glycosylphosphatidylinositol Anchor Regulates T Cell Antigen Receptor Induced IL-2 Production

DOI: 10.4236/oji.2021.111001, PP. 1-24

Keywords: GPI Anchor, TCR Regulation, IL-2 Production

Full-Text   Cite this paper   Add to My Lib

Abstract:

Differential contributions of the glycosylphosphatidylinositol (GPI)-anchor and GPI-anchored proteins (GPI-AP) to signalling remain poorly understood. Here we show that GPI-AP deficient murine clones produce on average 18 and 181-fold more IL-2 mRNA and protein, respectively, upon T cell receptor (TCR) stimulation, in a cell-intrinsic fashion. This phenotype is formally attributed to a mutation within the transferase complex that predicates the initial step in GPI-anchor biosynthesis. Conditional disruption of the transferase complex enabled the generation of primary GPI-AP deficient CD4+ T cells, which produce on average 10- and 23-fold more IL-2 mRNA and protein, respectively, upon TCR stimulation. Conditional disruption of the transamidase complex yields GPI-sufficient, GPI-AP deficient primary CD4+ T cells. TCR stimulation of these cells yields levels of IL-2 mRNA and protein ranging from 1 - 3 and 3-fold, respectively, of controls. These results provide the first evidence of a profound impact of GPI in the regulation of TCR signalling.

References

[1]  Ferguson, M.A.J., Hart, G.W. and Kinoshita, T. (2017) Chapter 12. Glycosylphosphatidylinositol Anchors. In: Rd, Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L. and Seeberger, P.H., Eds., Essentials of Glycobiology, Cold Spring Harbor, New York, 137-150.
[2]  Kinoshita, T. and Fujita, M. (2016) Thematic Review Series: Glycosylphosphatidylinositol (GPI) Anchors: Biochemistry and Cell Biology Biosynthesis of GPI-Anchored Proteins: Special Emphasis on GPI Lipid Remodeling. Journal of Lipid Research, 57, 6-24.
https://doi.org/10.1194/jlr.R063313
[3]  Suzuki, K.G. (2015) New Insights into the Organization of Plasma Membrane and Its Role in Signal Transduction. International Review of Cell and Molecular Biology, 317, 67-96.
https://doi.org/10.1016/bs.ircmb.2015.02.004
[4]  Leyton, L., Diaz, J., Martinez, S., Palacios, E., Pérez, L.A. and Pérez, R.D. (2019) Thy-1/CD90 a Bidirectional and Lateral Signaling Scaffold. Frontiers in Cell and Developmental Biology, 7, 132.
https://doi.org/10.1016/j.biocel.2010.09.001
[5]  Elishmereni, M. and Levi-Schaffer, F. (2011) CD48: A Co-Stimulatory Receptor of Immunity. The International Journal of Biochemistry & Cell Biology, 43, 25-28.
https://doi.org/10.1073/pnas.0905217106
[6]  van Zanten, T.S., Cambi, A., Koopman, M., Joosten, B., Figdor, C.G. and Garcia-Parajo, M.F. (2009) Hotspots of GPI-Anchored Proteins and Integrin Nanoclusters Function as Nucleation Sites for Cell Adhesion. Proceedings of the National Academy of Sciences of the United States of America, 106, 18557-18562.
https://doi.org/10.1073/pnas.0905217106
[7]  Sesana, S., Re, F., Bulbarelli, A., Salerno, D., Cazzaniga, E. and Masserini, M. (2008) Membrane Features and Activity of GPI-Anchored Enzymes: Alkaline Phosphatase Reconstituted in Model Membranes. Biochemistry, 47, 5433-5440.
https://doi.org/10.1021/bi800005s
[8]  Lublin, D.M. and Coyne, K.E. (1991) Phospholipid-Anchored and Transmembrane Versions of Either Decay-Accelerating Factor or Membrane Cofactor Protein Show Equal Efficiency in Protection from Complement-Mediated Cell Damage. Journal of Experimental Medicine, 174, 35-44.
https://doi.org/10.1084/jem.174.1.35
[9]  Haziot, A., Rong, G.W., Bazil, V., Silver, J. and Goyert, S.M. (1994) Recombinant Soluble CD14 Inhibits LPS-Induced Tumor Necrosis Factor-Alpha Production by Cells in Whole Blood. The Journal of Immunology, 152, 5868-5876.
[10]  Itzhaky, D., Raz, N. and Hollander, N. (1998) The Glycosylphosphatidylinositol-Anchored Form and the Transmembrane Form of CD58 Associate with Protein Kinases. The Journal of Immunology, 160, 4361-4366.
https://doi.org/10.1194/jlr.R062760
[11]  Muniz, M. and Riezman, H. (2016) Trafficking of Glycosylphosphatidylinositol Anchored Proteins from the Endoplasmic Reticulum to the Cell Surface. Journal of Lipid Research, 57, 352-360.
https://doi.org/10.1194/jlr.R062760
[12]  Saha, S., Anilkumar, A.A. and Mayor, S. (2016) GPI-Anchored Protein Organization and Dynamics at the Cell Surface. Journal of Lipid Research, 57, 159-175.
https://doi.org/10.1194/jlr.R062885
[13]  Zurzolo, C. and Simons, K. (2016) Glycosylphosphatidylinositol-Anchored Proteins: Membrane Organization and Transport. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858, 632-639.
https://doi.org/10.1016/j.bbamem.2015.12.018
[14]  Hochsmann, B., Murakami, Y., Osato, M., Knaus, A., Kawamoto, M., Inoue, N., Hirata, T., Murata, S., Anliker, M., Eggermann, T., Jager, M., Floettmann, R., Hollein, A., Murase, S., Ueda, Y., Nishimura, J.I., Kanakura, Y., Kohara, N., Schrezenmeier, H., Krawitz, P.M. and Kinoshita, T. (2019) Complement and Inflammasome Overactivation Mediates Paroxysmal Nocturnal Hemoglobinuria with Autoinflammation. Journal of Clinical Investigation, 129, 5123-5136.
https://doi.org/10.1172/JCI123501
[15]  Wang, Y., Hirata, T., Maeda, Y., Murakami, Y., Fujita, M. and Kinoshita, T. (2019) Free, Unlinked Glycosylphosphatidylinositols on Mammalian Cell Surfaces Revisited. Journal of Biological Chemistry, 294, 5038-5049.
https://doi.org/10.1074/jbc.RA119.007472
[16]  Freeman, G.J., Long, A.J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L.J., Malenkovich, N., Okazaki, T., Byrne, M.C., Horton, H.F., Fouser, L., Carter, L., Ling, V., Bowman, M.R., Carreno, B.M., Collins, M., Wood, C.R. and Honjo, T. (2000) Engagement of the PD-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. Journal of Experimental Medicine, 192, 1027-1034.
https://doi.org/10.1084/jem.192.7.1027
[17]  Abdul-Wahid, A., Huang, E.H., Lu, H., Flanagan, J., Mallick, A.I. and Gariepy, J. (2012) A focused Immune Response Targeting the Homotypic Binding Domain of the Carcinoembryonic Antigen Blocks the Establishment of Tumor Foci in Vivo. International Journal of Cancer, 131, 2839-2851.
https://doi.org/10.1002/ijc.27582
[18]  Haughn, L., Gratton, S., Caron, L., Sekaly, R.P., Veillette, A. and Julius, M. (1992) Association of Tyrosine Kinase p56lck with CD4 Inhibits the Induction of Growth through the αβ T-Cell Receptor. Nature, 358, 328-331.
https://doi.org/10.1038/358328a0
[19]  Takahama, Y., Ohishi, K., Tokoro, Y., Sugawara, T., Yoshimura, Y., Okabe, M., Kinoshita, T. and Takeda, J. (1998) Functional Competence of T Cells in the Absence of Glycosylphosphatidylinositol-Anchored Proteins Caused by T Cell-Specific Disruption of the Pig-A Gene. European Journal of Immunology, 28, 2159-2166.
https://doi.org/10.1002/(SICI)1521-4141(199807)28:07%3C2159::AID-IMMU2159% 3E3.0.CO;2-B
[20]  Boyman, O., Kovar, M., Rubinstein, M.P., Surh, C.D. and Sprent, J. (2006) Selective Stimulation of T Cell Subsets with Antibody-Cytokine Immune Complexes. Science, 311, 1924-1927.
https://doi.org/10.1126/science.1122927
[21]  Watanabe, R., Murakami, Y., Marmor, M.D., Inoue, N., Maeda, Y., Hino, J., Kangawa, K., Julius, M. and Kinoshita, T. (2000) Initial Enzyme for Glycosylphosphatidylinositol Biosynthesis Requires PIG-P and Is Regulated by DPM2. The EMBO Journal, 19, 4402-4411.
https://doi.org/10.1093/emboj/19.16.4402
[22]  Otani, H., Erdos, M. and Leonard, W.J. (1993) Tyrosine Kinase(s) Regulate Apoptosis and bcl-2 Expression in a Growth Factor-Dependent Cell Line. Journal of Biological Chemistry, 268, 22733-22736.
https://doi.org/10.1016/S0021-9258(18)41588-8
[23]  Broome, H.E., Dargan, C.M., Krajewski, S. and Reed, J.C. (1995) Expression of Bcl-2, Bcl-x, and Bax after T Cell Activation and IL-2 Withdrawal. The Journal of Immunology, 155, 2311-2317.
[24]  Carter, L., Fouser, L.A., Jussif, J., Fitz, L., Deng, B., Wood, C.R., Collins, M., Honjo, T., Freeman, G.J. and Carreno, B.M. (2002) PD-1: PD-L Inhibitory Pathway Affects Both CD4+ and CD8+ T Cells and Is Overcome by IL-2. European Journal of Immunology, 32, 634-643.
https://doi.org/10.1002/1521-4141(200203)32:3%3C634::AID-IMMU634%3E3.0.CO;2-9
[25]  Latchman, Y., Wood, C.R., Chernova, T., Chaudhary, D., Borde, M., Chernova, I., Iwai, Y., Long, A.J., Brown, J.A., Nunes, R., Greenfield, E.A., Bourque, K., Boussiotis, V.A., Carter, L.L., Carreno, B.M., Malenkovich, N., Nishimura, H., Okazaki, T., Honjo, T., Sharpe, A.H. and Freeman, G.J. (2001) PD-L2 Is a Second Ligand for PD-1 and Inhibits T Cell Activation. Nature Immunology, 2, 261-268.
https://doi.org/10.1038/85330
[26]  Hazenbos, W.L., Murakami, Y., Nishimura, J., Takeda, J. and Kinoshita, T. (2004) Enhanced Responses of Glycosylphosphatidylinositol Anchor-Deficient T Lymphocytes. The Journal of Immunology, 173, 3810-3815.
https://doi.org/10.4049/jimmunol.173.6.3810
[27]  Hong, Y., Ohishi, K., Kang, J.Y., Tanaka, S., Inoue, N., Nishimura, J., Maeda, Y. and Kinoshita, T. (2003) Human PIG-U and Yeast Cdc91p Are the Fifth Subunit of GPI Transamidase That Attaches GPI-Anchors to Proteins. Molecular Biology of the Cell, 14, 1780-1789.
https://doi.org/10.1091/mbc.e02-12-0794
[28]  Allen, J.M., Forbush, K.A. and Perlmutter, R.M. (1992) Functional Dissection of the lck Proximal Promoter. Molecular and Cellular Biology, 12, 2758-2768.
https://doi.org/10.1128/MCB.12.6.2758
[29]  Tomavo, S., Couvreur, G., Leriche, M.A., Sadak, A., Achbarou, A., Fortier, B. and Dubremetz, J.F. (1994) Immunolocalization and Characterization of the Low Molecular Weight Antigen (4-5 kDa) of Toxoplasma gondii That Elicits an Early IgM Response upon Primary Infection. Parasitology, 108, 139-145.
https://doi.org/10.1017/S0031182000068220
[30]  Dickson, E.J. and Hille, B. (2019) Understanding Phosphoinositides: Rare, Dynamic, and Essential Membrane Phospholipids. Biochemical Journal, 476, 1-23.
https://doi.org/10.1042/BCJ20180022
[31]  Balla, T. (2013) Phosphoinositides: Tiny Lipids with Giant Impact on Cell Regulation. Physiological Reviews, 93, 1019-1137.
https://doi.org/10.1152/physrev.00028.2012
[32]  Pompura, S.L. and Dominguez-Villar, M. (2018) The PI3K/AKT Signaling Pathway in Regulatory T-Cell Development, Stability, and Function. Journal of Leukocyte Biology, 103, 1065-1076.
https://doi.org/10.1002/JLB.2MIR0817-349R
[33]  Myers, D.R., Wheeler, B. and Roose, J.P. (2019) mTOR and Other Effector Kinase Signals That Impact T Cell Function and Activity. Immunological Reviews, 291, 134-153.
https://doi.org/10.1111/imr.12796
[34]  Cantrell, D.A. (2002) T-Cell Antigen Receptor Signal Transduction. Immunology, 105, 369-374.
https://doi.org/10.1046/j.1365-2567.2002.01391.x
[35]  Wang, Y., Maeda, Y., Liu, Y.S., Takada, Y., Ninomiya, A., Hirata, T., Fujita, M., Murakami, Y. and Kinoshita, T. (2020) Cross-Talks of Glycosylphosphatidylinositol Biosynthesis with Glycosphingolipid Biosynthesis and ER-Associated Degradation. Nature Communications, 11, Article No. 860.
https://doi.org/10.1038/s41467-020-14678-2
[36]  Hosokawa, K., Kajigaya, S., Keyvanfar, K., Qiao, W., Xie, Y., Biancotto, A., Townsley, D.M., Feng, X. and Young, N.S. (2017) Whole Transcriptome Sequencing Identifies Increased CXCR2 Expression in PNH Granulocytes. British Journal of Haematology, 177, 136-141.
https://doi.org/10.1111/bjh.14502
[37]  Hill, A., DeZern, A.E., Kinoshita, T. and Brodsky, R.A. (2017) Paroxysmal Nocturnal Haemoglobinuria. Nature Reviews Disease Primers, 3, Article No. 17028.
https://doi.org/10.1038/nrdp.2017.28
[38]  Kunyaboon, R., Wanachiwanawin, W., Y, U.P., Thedsawad, A. and Taka, O. (2012) Mechanism of Paroxysmal Nocturnal Hemoglobinuria Clonal Dominance: Possible Roles of Different Apoptosis and CD8+ Lymphocytes in the Selection of Paroxysmal Nocturnal Hemoglobinuria Clones. Hematology/Oncology and Stem Cell Therapy, 5, 138-145.
https://doi.org/10.5144/1658-3876.2012.138
[39]  Gargiulo, L., Papaioannou, M., Sica, M., Talini, G., Chaidos, A., Richichi, B., Nikolaev, A.V., Nativi, C., Layton, M., de la Fuente, J., Roberts, I., Luzzatto, L., Notaro, R. and Karadimitris, A. (2013) Glycosylphosphatidylinositol-Specific, CD1d-Restricted T Cells in Paroxysmal Nocturnal Hemoglobinuria. Blood, 121, 2753-2761.
https://doi.org/10.1182/blood-2012-11-469353
[40]  Rosti, V., Tremml, G., Soares, V., Pandolfi, P.P., Luzzatto, L. and Bessler, M. (1997) Murine Embryonic Stem Cells without Pig-A Gene Activity Are Competent for Hematopoiesis with the PNH Phenotype but Not for Clonal Expansion. Journal of Clinical Investigation, 100, 1028-1036.
https://doi.org/10.1172/JCI119613
[41]  Kulasekararaj, A.G. (2017) Clonal Dominance of PNH- Another Piece to the Jigsaw. British Journal of Haematology, 177, 9-10.
https://doi.org/10.1111/bjh.14552
[42]  Chen, Y., Tao, S., Deng, Y., Song, L. and Yu, L. (2015) Chronic Myeloid Leukemia Transformation in a Patient with Paroxysmal Nocturnal Hemoglobinuria: A Rare Case Report with Literature Review. International Journal of Clinical and Experimental Medicine, 8, 8226-8229.
[43]  Harris, J.W., Koscick, R., Lazarus, H.M., Eshleman, J.R. and Medof, M.E. (1999) Leukemia Arising Out of Paroxysmal Nocturnal Hemoglobinuria. Leukemia & Lymphoma, 32, 401-426.
https://doi.org/10.3109/10428199909058399
[44]  Isoda, A., Ogawa, Y., Matsumoto, M. and Sawamura, M. (2009) Coexistence of Paroxysmal Nocturnal Hemoglobinuria (PNH) and Acute Lymphoblastic Leukemia (ALL): Is PNH a Prodrome of ALL? Leukemia Research, 33, e3-e5.
https://doi.org/10.1016/j.leukres.2008.05.016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133