全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Allelopathic Effect of Three Wild Plants (Azadirachta indica, Tithonia diversifolia and Thevetia peruviana) on Tomato (Lycopersicum esculentum Mill.) Growth and Stimulation of Metabolites Involved in Plant Resistance

DOI: 10.4236/ajps.2021.123018, PP. 285-299

Keywords: Allelopathic, Wild Plants, Growth, Plant Resistance, Tomato

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this study was to determine the allelopathic effects of Azadirachta indica oil and aqueous extracts of Tithonia diversifolia and Thevetia peruviana on the growth and stimulation of metabolites involved in tomato plant resistance. Randomized in blocks within a shaded area, the different treatments prepared at 10% and 15% (v/v and w/v) in water were subsequently applied on tomatoes seeds to monitor the effect on germination, and on tomatoes leaves to monitor the effect on growth and resilience of the plants. The result showed that in stressful conditions all the treatments significantly inhibit (p < 0.05) the germination capacity of the seeds from 21.22% to 92.61%, the germination rate from 39.82% to 92.76% and the germination viability of the seedlings from 64.67% to 100%. However, the negative allelopathic effect of the treatment was significantly reduced (p < 0.05) when used for germination initiation by botanical priming. In addition, while T. diversifolia at 10% promotes a better aerial and root growth in tomato plants, T. peruviana at 15% induces the activation of resistance mechanisms in tomato plants by increasing protein levels to 104.5%, phenol levels to 183.33% and peroxidase enzyme activity to 586.15%. Therefore, allelopathic compound of wild plants would be a good alternative for growth promotion and resistance of tomato crops.

References

[1]  FAO (Organisation des Nations Unies pour l’Alimentation et l’Agriculture) (2018) études diagnostique de la réduction des pertes après récolte de trois cultures: Manioc, tomate, pomme de terre. Rapport de synthèse, Cameroun, Rome, 108 p.
http://www.fao.org/3/I8571FR/i8571fr.pdf
[2]  Kanda, M., Akpavi, S., Wala, K., Djaneye-Boundjou, G. and Akpagana, K. (2014) Diversité des espèces cultivées et contraintes à la production en agriculture maraîchère au Togo. International Journal of Biological and Chemical Sciences, 8, 115-127.
https://doi.org/10.4314/ijbcs.v8i1.11
[3]  Mondedji, A.D., Nyamador, W.S., Amevoin, K., Adeoti, R., Abbey, G.A. Ketoh, G.K. and Glitho, I.A. (2015) Analyse de quelques aspects du système de production légumière et perception des producteurs de l’utilisation d’extraits botaniques dans la gestion des insectes ravageurs des cultures maraichères au Sud du Togo. International Journal of Biological and Chemical Sciences, 9, 98-107.
https://doi.org/10.4314/ijbcs.v9i1.10
[4]  Agboyi, L.K., Ketoh, G.K., Martin, T., Glitho A.I. and Tamo. M. (2016) Pesticide Resistance in Plutella xylostella (Lepidoptera: Plutellidae) Populations from Togo and Benin. International Journal of Tropical Insect Science, 36, 204-210.
https://doi.org/10.1017/S1742758416000138
[5]  Philogene, B.J.R., Regnault-Roger, C. and Vincent, C. (2003) Produits phytosanitaires insecticides d’origine végétale: Promesses d’hier et d’aujourd’hui. In: Roger, C., Philogène, B.J.R. and Vincent, C., Eds., Biopesticides d’Origine Végétale, Lavoisier TEC & DOC., Paris, 1-15.
[6]  Shannag, H.S., Capinera, J.L. and Freihat, N.M. (2014) Efficacy of Different Neem-Based Biopesticides against Green Peach Aphid, Myzus persicae (Hemiptera: Aphididae). International Journal of Agricultural Policy and Research, 2, 61-68.
[7]  Regnault-Roger, C., Philogène, B.J.R. and Vincent, C. (2002) Biopesticides d’origines Végétales. Tec & Doc, Paris, 337.
[8]  Ipou Ipou, J., Toure, A. and Tiebre, M. (2009) Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae), une nouvelle espèce envahissante des cultures, au centre-ouest de la Côte d’Ivoire. Dijon, XIIIème Colloque International sur la Biologie des Mauvaises Herbes.
[9]  Kaho, F., Yemefack, M., Feujio-Teguefouet, P. and Tchantchaouang, J.C. (2011) Effet combiné des feuilles de Tithonia diversifolia et des engrais inorganiques sur les rendements du maïs et les propriétés d’un sol ferralitique au Centre Cameroun. Tropicultura, 1, 39-45.
[10]  Mucheru-Muna, M., Mugendis, D., Pypers, P., Mugwe, J., Kung’u, J., Vanlauwe, B. and Merckx, R. (2013) Enhancing Maize Productivity and Profitability Using Organic Inputs and Mineral Fertilizer in Central Kenya Small-Hold Farms. Experimental Agriculture, 50, 250-269.
https://doi.org/10.1017/S0014479713000525
[11]  Hafifah, S., Maghfoer, M. and Prasetya, B. (2016) The Potential of Tithonia diversifolia Green Manure for Improving Soil Quality for Cauliflower (Brassica oleracea var. Brotrytis L.). Journal of Degraded and Mining Lands Management, 3, 499-506.
[12]  Olayinka, B.U., Raiyemo, D.A. and Etejere, E.O. (2015) Phytochemical and Proximate Composition of Tithoniq diversifolia (Hemsl.) A. Gray. Annals. Food Science and Technology, 16, 195-200.
http://www.afst.valahia.ro
[13]  Koul, O., Multani, J.S., Goomber, S., Daniewski, W.M. and Berlozecki, S. (2004) Activity of Some Nonazadirachtin Limonoids from Azadirachta indica against Lepidoteran Larvae. Australian Journal of Entomology, 43, 189-195.
http://onlinelibrary.wiley.com
https://doi.org/10.1111/j.1440-6055.2003.00390.x
[14]  Harouna, M.A., Baoua, I., Lawali, S., Tamo, M., Amadou, L., Mahamane, S. and Pittendrighm, B. (2019) Essai comparatif de l’utilisation des extraits du Neem et du virus entomopathogène MaviNPV dans la gestion des insectes ravageurs du niébé en milieu paysan au Niger. International Journal of Biological and Chemical Sciences, 13, 950-961.
http://www.ifgdg.org
https://doi.org/10.4314/ijbcs.v13i2.30
[15]  Seck, M. (1997) Effet de l’extrait aqueux des feuilles de neem (Azadirachta indica A. Juss) sur la population de Thrips et le rendement du niébé (Vigna unguiculata). Rapport de stage, ISRA/CNRA, Sénégal, 40 p.
[16]  Yarou, B.B., Silvie, P., Komlan, A.F., Mensah, A., Alabi, T., Verheggen, F. and Francis, F. (2017) Plantes pesticides et protection des cultures maraïchères en Afrique de l’Ouest. Biotechnology, Agronomy, Society and Environment, 21, 288-304.
[17]  Tewtrakul, S., Nakamura, N. and Hattori, M. (2002) Flavanone and Flavonol Glycosides from the Leaves of Thevetia peruviana and Their HIV-1 Reverse Transcriptase and HIV-1 Integrase Inhibitory Activities. Chemical and Pharmaceutical Bulletin, 50, 630-635.
https://doi.org/10.1248/cpb.50.630
[18]  Ambang, Z., Ngoh, D., Ndongo, B. and Djile, B. (2005) Effet des extraits bruts des graines du laurier jaune (Thevetia peruviana Pers) sur les charançons Sitophilus zeamais Motsch), ravageurs des stocks. Proceeding of 12th Annual Conference of the Cameroon Bioscience Society, Yaounde, 2005, 27-36.
[19]  Gata-Gonçalves, L., Nogueira, J.M.F., Matos, O. and Bruno De Sousa, R. (2003) Photoactive Extract from Thevetia peruviana with Antifungal Properties against Cladosporium cucumerinum. Journal of Photochemistry and Photobiology B: Biology, 70, 51-54.
https://doi.org/10.1016/S1011-1344(03)00024-1
[20]  Ambang, Z., Ngoh, D., Essono, G., Bekolo, N., Chewachong, G. and Asseng, C. (2010) Effect of Thevetia peruviana Seeds Extract on in Vitro Growth of Four Strains of Phytophtora megakarya. Plant Omics Journal, 3, 70-76.
[21]  Saxena, V.K. and Jain, S.K. (1990) Thevetia peruviana Kernel Oil: A Potential Bactericidal Agent. Fitoterapia, 61, 348-349.
[22]  Adesina, O.G. (2013) Does Soil under Natural Tithonia diversifolia Vegetation Inhibit Seed Germination of Weed Species? American Journal of Plant Science, 4, 2165-2173.
https://doi.org/10.4236/ajps.2013.411268
[23]  Ademiluyi, O.B. and Ajewole T.O. (2013) Study on the Effects of Fresh Shoot Biomass of Tithonia diversifolia on the Germination, Growth and Yield of Cowpea (Vigna unguiculata L.). American Journal of Experimental Agriculture, 3, 1005-1011.
https://doi.org/10.9734/AJEA/2013/4361
[24]  Mamadou, F. (2010) Nouveau fractionnement de la graine de Neem (Azadirachta indica Juss) sénégalais: Production d’un biopesticide d’huile et de tourteau. Thèse en vue de l’obtention du Doctorat de l’Université de Toulouse délivré par l’Institut Polytechnique de Toulouse, Toulouse, 267 p.
[25]  Pohe, J. and Agneroh, T.A. (2013) L’huile des graines de Neem, un fongicide alternatif à l’oxyde de cuivre dans la lutte contre la pourriture brune des cabosses de cacaoyer en Côte d’Ivoire. Journal of Applied Biosciences, 62, 4644-4652.
https://doi.org/10.4314/jab.v62i0.86147
[26]  Heler, R., Esnault, R. and Lance, C. (2000) Physiologie végétale et développement. Dunod, Paris, 366 p.
[27]  Pearcy, R.W., Ehleringer, J.E., Monney, H.A. and Rundel, P.W. (1989) Plant Physiological Ecology: Field Methods and Instrumentation. Chapman and Hall, New York, 423 p.
https://doi.org/10.1007/978-94-009-2221-1
[28]  Boudjeko, T., Djocgoue, P.F., Nankeu, D.J., Mbouobda, H.D., Omokolo, N.D. and El Hadrami, I. (2007) Luteolin Derivatives and Heritability of Resistance to Phytophthora megakarya in Theobroma cacao. Australasian Plant Pathology, 36, 56-61.
https://doi.org/10.1071/AP06083
[29]  Marigo, G. (1973) Méthode de fractionnement et d’estimation des composés phénoliques chez les végétaux. Analysis, 2, 106-110.
[30]  Tene, T.P.M., Ewane, C.A., Effa, O.P. and Boudjeko, T. (2017) Effects of Chitosan and Snail Shell Powder on Cocoa (Theobroma cacao L.) Growth and Resistance against Black Pod Disease Caused by Phytophthora megakarya. African Journal of Plant Science, 11, 331-340.
https://doi.org/10.5897/AJPS2016.1487
[31]  Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principles of Protein-Dye Binding. Analytical Biochemistry, 72, 248-254.
https://doi.org/10.1016/0003-2697(76)90527-3
[32]  Baaziz, M., Aissam, F., Brake, Z., Bendiap, K., El Hadrami, I. and Cheick, K. (1994) Electrophoretic Patterns of Acid Soluble Proteins and Active Isoforms of Peroxidase and Polyphenoloxidase Typifying Calli and Somatic Embryos of Two Reputed Date Palm Cultivar in Morocco. Euphytica, 76, 159-168.
https://doi.org/10.1007/BF00022160
[33]  Van K.A. and Broumer, D. (1964) Increase of Polyphenoloxidase Activity by a Local Virus Infection in Inoculated Parts of Leaves. Virology, 22, 9-14.
https://doi.org/10.1016/0042-6822(64)90042-X
[34]  Otusanya, O.O., Sokam-Adeaga, A.A. and Ilori, O.J. (2014) Allelopathic Effect of the Root Exudates of Tithonia diversifolia on the Germination, Growth and Chlorophyll Accumulation of Amaranthus dubius L. and Solanum melongena L. Research Journal of Botany, 9, 13-23.
https://doi.org/10.3923/rjb.2014.13.23
[35]  Ilori, O.J., Otusanya, O.O. and Adelusi, A.A. (2007) Phytotoxic Effects of Tithonia diversifolia on Germination and Growth of Oryza sativa. Research Journal of Botany, 2, 23-32.
https://doi.org/10.3923/rjb.2007.23.32
[36]  Pavithra, G., Anusha, M. and Rajylakshmi, M. (2012) Effetct of Thevetia peruviana Extracts on In-Vitro and In-Vivo Culture of Parthenium hysterophorus L. Journal of Crop Science, 3, 83-86.
[37]  Lawan, S., Suleiman, M. and Yahaya, S. (2011) Inhibition of Germination and Growth Behavior of Some Cowpea Varieties Using Neem (Azadirachta indica) Leaf Water Extracts. Bayero Journal of Pure and Applied Sciences, 4, 169-172.
https://doi.org/10.4314/bajopas.v4i2.34
[38]  El-Amier Y.A. and Abdullah, T.J. (2014) Allelopathic Effect of Four Wild Species on Germination and Seedling Growth of Echinocloa crus-galli (L.) P. Beauv. International Journal of Advanced Research, 2, 287-294.
[39]  Varier, A., Vari, A.K. and Dadlani, M. (2010) The Subcellular Basis of Seed Priming. Current Science, 99, 450-456.
[40]  Ahmed, Z., Sheikh, M.A., Hameed, A. and Salah, U.D. (2012) Investigation of Antioxidant Enzymes and Biochemical Changes in the Wheat Seed (Freed) Induced by Different Pre-Sowing Treatments. World Applied Sciences Journal, 18, 31-36.
[41]  De Castro, R.D., Lammeren, A.M., Groot, P.C., Bino, J.R. and Hilhorst W.M. (2000) Cell Division and Subsequent Radicle Protrusion in Tomato Seeds Are Inhibited by Osmotic Stress but DNA Synthesis and Formation of Microtubular Cytoskeleton Are Not. Plant Physiology, 122, 327-336.
https://doi.org/10.1104/pp.122.2.327
[42]  Boucelha, L. and Djebbar, R. (2015) Influence de différents traitements de pré-germination des graines de Vigna unguiculata (L.) Walp. sur les performances germinatives et la tolérance au stress hydrique. Biotechnology, Agronomy, Society and Environnement, 19, 160-172.
[43]  Musyimi, D.M., Okelo, L.O., Okello, V.S. and Sikuku, P. (2015) Allelopathic Potential of Mexican Sunflower [Tithonia diversifolia (hemsl) a. Gray] on Germination and Growth of Cowpea Seedlings (Vigna sinensis L.). Scientia Agriculturae, 12, 149-155.
[44]  Taiwo, L.B. and Makinde, J.O. (2005) Influence of Water Extract of Mexican Sunflower (Tithonia diversifolia) on Growth of Cowpea (Vigna unguiculata). African Journal of Biotechnology, 4, 355-360.
[45]  Oyerinde, R.O., Otusanya, O.O. and Akpor, O.B. (2009) Allelopathic Effect of Tithonia diversifolia on the Germination, Growth and Chlorophyll Contents of Maize (Zea mays L.). Scientific Research and Essay, 4, 1553-1558.
[46]  Pasqualone, A., Delvecchio, L.N., Mangini, G., Taranto, F. and Blanco, A. (2014) Variability of Total Soluble Phenolic Compounds and Antioxidant Activity in a Collection of Tetraploid Wheat. Agricultural and Food Science, 23, 307-316.
https://doi.org/10.23986/afsci.47985
[47]  Raymond, J., Rakariyatham, N. and Azanza, J.L. (1993) Purification and Some Properties of Polyphenoloxidase from Sunflower Seeds. Phytochemistry, 34, 927-931.
https://doi.org/10.1016/S0031-9422(00)90689-7
[48]  Clerivet, A., Alami, I., Breton, F., Garcia, D. and Sanier, C. (1996) Les composés phénoliques et la résistance des plantes aux agents pathogènes. Acta Botanica Gallica, 143, 531-538.
https://doi.org/10.1080/12538078.1996.10515350
[49]  Li, L. and Steffens, J.C. (2002) Over Expression of Polyphenol Oxidase in Transgenic Tomato Plants Results in Enhanced Bacterial Disease Resistance. Planta, 215, 239-247.
https://doi.org/10.1007/s00425-002-0750-4
[50]  Wang, J. and Constabel, C.P. (2004) Polyphenol Oxidase Overexpression in Transgenic Populus Enhances Resistance to Herbivory by Forest Tent Caterpillar (Malacosoma disstria). Planta, 220, 87-96.
https://doi.org/10.1007/s00425-004-1327-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133