全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fe基合金薄带GMI效应与驱动线圈直径关系的研究
Study on the Relationship between the Giant Magneto-Impedance Effect of Fe-Based Alloy Strips and the Diameter of Drive Coil

DOI: 10.12677/JSTA.2021.92005, PP. 35-40

Keywords: 磁性材料,驱动线圈,驱动频率,巨磁阻抗效应,占空比
Magnetic Materials
, Drive Coil, Driving Frequency, Giant Magneto-Impedance, Duty Cycle

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了Fe基(Fe73.5Cu1Nb3Si13.5B9)合金薄带为磁芯的驱动线圈的巨磁阻抗效应与驱动线圈直径之间的关系。结果表明,驱动线圈的直径是影响Fe基磁芯驱动线圈巨磁阻抗效应的重要因素。驱动线圈直径越小,巨磁阻抗效应越明显,且随着驱动线圈直径的增大,磁芯驱动线圈的最大阻抗比(ΔZ/Z)max呈现指数性降低;磁芯驱动线圈在低频时,对频率的变化响应非常灵敏;磁芯与驱动线圈的占空比与磁芯驱动线圈最大阻抗比(ΔZ/Z)max之间存在指数增大关系
The relationship between the giant magnetic-impedance effect and the diameter of drive coil with the Fe based (Fe
73.5Cu1Nb3Si13.5B9) alloy strips as the magnetic core is studied in this paper. The results show that the diameter of drive coil is an important factor affecting the giant magneto-impedance effect of Fe-based alloy strips. The smaller the diameter of drive coil is, the more obvious the giant magneto-impedance effect is. And the maximum impedance ratio (ΔZ/Z)max of the magnetic core drive coil decreases exponentially with the increase of the diameter of the magnetic core

References

[1]  Yoshizawa, Y., Oguma, S. and Yamauchi, K. (1988) New Fe-Based Soft Magnetic Alloys Composed of Ultrafine Grain Structure. Journal of Applied Physics, 64, 6044-6046.
https://doi.org/10.1063/1.342149
[2]  Yoshizawa, Y. and Yamauchi, K. (1990) Fe-Based Soft Magnetic Alloys Composed of Ultrafine Grain Structure. Materials Transac-tions-Japan Institute of Metals, 31, 307-314.
https://doi.org/10.2320/matertrans1989.31.307
[3]  Yoshizawa, Y. and Yamauchi, K. (1991) Magnetic Properties of Fe-Cu-M-Si-B (M = Cr, V, Mo, Nb, Ta, W) Alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 133, 176-179.
https://doi.org/10.1016/0921-5093(91)90043-M
[4]  Tejedor, M., Hemando, B. and Sánchez, M.L. (1998) Mag-neto Impedance Effect in Zero Magnetostriction Nanocrystalline Fe73.5Cu1Nb3Si16.5B6 Ribbons. Journal of Mag-netism and Magnetic Materials, 185, 61-65.
https://doi.org/10.1016/S0304-8853(98)00005-5
[5]  Duwez, P., Willens, R.H. and Klement, W. (1960) Continu-ous Series of Metastable Solid Solutions in Silver-Copper Alloys. Journal of Applied Physics, 31, 1136-1137.
https://doi.org/10.1063/1.1735777
[6]  Pipka, P. (2008) Senors Based on Bulk Soft Magnetic Materials: Advances and Challenges. Journal of Magnetism and Magnetic Materials, 320, 2466-2473.
https://doi.org/10.1016/j.jmmm.2008.04.079
[7]  Vázquez, M. and Hernando, A. (1996) A Soft Magnetic Wire for Sensor Applications. Journal of Physics D, 29, 939-949.
https://doi.org/10.1088/0022-3727/29/4/001
[8]  Vázquez, M. (2001) Giant Magneto-Impedance in Soft Magnetic “Wires”. Journal of Magnetism and Magnetic Materials, 226, 693-699.
https://doi.org/10.1016/S0304-8853(01)00013-0
[9]  Knobel, M. and Pirota, K.R. (2002) Giant Magne-toimpedance: Concepts and Recent Progress. Journal of Magnetism and Magnetic Materials, 242, 33-40.
https://doi.org/10.1016/S0304-8853(01)01180-5
[10]  Kraus, L. (2003) GMI Modeling and Material Optimization. Sensors and Actuators A: Physical, 106, 187-194.
https://doi.org/10.1016/S0924-4247(03)00164-X
[11]  Panina, L., Mohri, K., Bushida, K., et al. (1994) Gi-ant-Magneto-Impedance and Magneto Inductive Effects in Amorphous Alloys. Journal of Applied Physics, 76, 6198-6203.
https://doi.org/10.1063/1.358310
[12]  杨介信, 杨燮龙, 陈国, 等. 一种新型的纵向驱动巨磁阻抗效应[J]. 科学通报, 1998, 43(10): 1051-1053.
[13]  方允樟, 许启明, 郑金菊, 等. FeCo基磁芯螺线管巨磁阻抗效应与磁芯长度关系的研究[J]. 物理学报, 2011, 60(12): 539-544.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133