|
复杂环境下大型挠性航天器的振动抑制与能量采集
|
Abstract:
该研究提出使用非线性能量阱(Nonlinear Energy Sink, NES)对复杂环境下的大型挠性航天器进行振动抑制,并利用超磁致材料(Giant Magnetostrictive Materials, GMM)采集NES耗散的振动能,达到节约能源的效果。考虑太阳光压和热冲击的影响,建立Hamilton体系下大型挠性航天器的在轨动力学模型。根据Newton动力学定律得到NES的振动抑制方程,引入Jiles-Atherton模型求得GMM的能量采集表达式。将NES-GMM耦合于航天器的两自由端,利用Galerkin法对整体结构进行离散化,采用Runge-Kutta法进行数值仿真。结果表明NES对航天器的振动抑制效果十分显著,同时GMM能够采集NES耗散的部分振动能,因此该方案是完全可行的,此外适当调整NES和GMM的结构参数还可以提高工作性能。该研究为振动控制与能量采集技术在航天领域的应用提供了新的思路。
This study proposed Nonlinear Energy Sink (NES) for the vibration suppression of large flexible spacecraft in complex environments, and Giant Magnetostrictive Materials (GMM) for harvesting the vibrational energy dissipated by NES to reach the effect of energy saving. Considering the influence of sunlight pressure and thermal shock, the in-orbit dynamic model of large flexible spacecraft was established in the Hamilton system. The NES equations of vibration suppression were obtained according to Newton’s dynamic laws, and introducing Jiles-Atherton model deduced the GMM expressions of energy harvesting. NES-GMMs were coupled to the both free ends of spacecraft, which was discretized by Galerkin method, and Runge-Kutta method was used for numerical simulations. The results demonstrated that the effect of NES on the vibration suppression of spacecraft is greatly significant. Meanwhile, GMM can harvest parts of the energy dissipated by NES. Therefore, the proposed method is completely feasible. Moreover, properly adjusting the structural parameters of NES and GMM can also improve the working performance. This study provides a new idea for the application of the technologies of vibration control and energy harvesting in the aerospace field.
[1] | Glaser, P.E. (2002) An Overview of the Solar Power Satellite Option. IEEE Transactions on Microwave Theory and Techniques, 40, 1230-1238. https://doi.org/10.1109/22.141356 |
[2] | 梁捷, 陈力, 梁频. 柔性空间机器人基于关节柔性补偿控制器与虚拟力概念的模糊全局滑模控制及振动主动抑制[J]. 振动与冲击, 2016, 35(18): 62-70. http://dx.chinadoi.cn/10.13465/j.cnki.jvs.2016.14.011 |
[3] | Malla, R.B., Nash, W.A. and Lardner, T.J. (1989) Motion and Deformation of Very Large Space Structures. AIAA Journal, 27, 374-376. https://doi.org/10.2514/3.10123 |
[4] | Li, X.F. and Cai, Z.Q. (2018) Dynamic Modeling and Simulations of a Teth-ered Space Solar Power Station. Journal of Aerospace Engineering, 31, Article ID: 04018026. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000850 |
[5] | McNally, I., Scheeres, D. and Radice, G. (2015) Locating Large Solar Power Satellites in the Geosynchronous Laplace Plane. Journal of Guidance, Control, and Dynam-ics, 38, 489-505. https://doi.org/10.2514/1.G000609 |
[6] | Sabatini, M., Palmerini, G.B. and Gasbarri, P. (2020) Synergetic Approach in Attitude Control of Very Flexible Satellites by Means of Thrusters and PZT Devices. Aerospace Science and Technology, 96, Article ID: 105541.
https://doi.org/10.1016/j.ast.2019.105541 |
[7] | Liu, L.L., Zhang, T.L., Zhang, H. and Jiang C.B. (2013) Mi-cro-displacement Positioning of Giant Magnetostrictive Actuator. Materials Science Forum, 745-746, 146-151. https://doi.org/10.4028/www.scientific.net/MSF.745-746.146 |
[8] | 陈阳, 方勃, 曲秀全, 王日新, 黄文虎. 新型整星隔振器隔振性能分析[J]. 宇航学报, 2007, 28(4): 986-990.
http://dx.chinadoi.cn/10.3321/j.issn:1000-1328.2007.04.041 |
[9] | 陈勇, 徐羿. 基于非线性能量吸振器的高耸结构减振分析[J]. 振动与冲击, 2014, 33(9): 27-32+54.
http://dx.chinadoi.cn/10.13465/j.cnki.jvs.2014.09.006 |
[10] | 熊怀, 孔宪仁, 刘源. 阻尼对耦合非线性能量阱系统影响研究[J]. 振动与冲击, 2015, 34(11): 116-121.
http://dx.chinadoi.cn/10.13465/j.cnki.jvs.2015.11.021 |
[11] | 臧健. 基于非线性能量阱的卫星整体振动抑制[D]: [硕士学位论文]. 沈阳: 沈阳航空航天大学, 2015. |
[12] | 贾振元, 杨兴, 郭东明. 超磁致伸缩材料控制模型的研究[J]. 压电与声光, 2001, 23(2): 164-166.
http://dx.chinadoi.cn/10.3969/j.issn.1004-2474.2001.02.023 |
[13] | 孟爱华, 杨剑锋, 蒋孙权, 刘帆, 刘成龙. 柱棒式超磁致伸缩能量收集器的设计与实验[J]. 振动与冲击, 2017, 36(12): 175-180. http://dx.chinadoi.cn/10.13465/j.cnki.jvs.2017.12.029 |
[14] | Liu, W., Yang, Z.C., Wang, L. and Guo, N. (2019) Bound-ary Condition Modeling and Identification for Cantilever-like Structures Using Natural Frequencies. Chinese Journal of Aeronautics, 32, 1451-1464.
https://doi.org/10.1016/j.cja.2019.04.003 |
[15] | Patel, T.R., Kumar, K.D. and Behdinan, K. (2009) Variable Struc-ture Control for Satellite Attitude Stabilization in Elliptic Orbits Using Solar Radiation Pressure. Acta Astronautica, 64, 359-373.
https://doi.org/10.1016/j.actaastro.2008.08.003 |
[16] | Yuan, X.D. and Xiang, Z.H. (2018) A Thermal-Flutter Crite-rion for an Open Thin-Walled Circular Cantilever Beam Subject to Solar Heating. Chinese Journal of Aeronautics, 31, 1902-1909. https://doi.org/10.1016/j.cja.2018.07.002 |
[17] | 刘欣, 潘增富. 卫星在轨太阳辐射热流的简化计算方法[J]. 中国空间科学技术, 2012, 32(4): 15-21.
http://dx.chinadoi.cn/10.3780/j.issn.1000-758X.2012.04.003 |
[18] | 曹淑瑛, 王博文, 闫荣格, 黄文美, 翁玲. 超磁致伸缩致动器的磁滞非线性动态模型[J]. 中国电机工程学报, 2003, 23(11): 145-149. http://dx.chinadoi.cn/10.3321/j.issn:0258-8013.2003.11.029 |
[19] | Jiles, D.C. (1995) Theory of the Magnetomechanical Effect. Journal of Physics D: Applied Physics, 28, 1537-1546.
https://doi.org/10.1088/0022-3727/28/8/001 |
[20] | 董彦辰, 张业伟, 陈立群. 惯容器非线性减振与能量采集一体化模型动力学分析[J]. 应用数学和力学, 2019, 40(9): 979-990. http://dx.chinadoi.cn/10.21656/1000-0887.400049 |
[21] | 魏乙, 邓子辰, 李庆军, 文奋强. 空间太阳能电站的轨道、姿态和结构振动的耦合动力学建模及辛求解[J]. 动力学与控制学报, 2016, 14(6): 513-519. http://dx.chinadoi.cn/10.6052/1672-6553-2016-021 |
[22] | 穆瑞楠, 王艺睿, 谭述君, 吴志刚, 齐朝晖. 空间太阳能电站姿态运动-结构振动耦合建模与分析[J]. 宇航学报, 2018, 39(6): 615-623. |
[23] | Meng, Q.J., Yang, C., Wang, X.Y. and Sun, H.X. (2014) The Performance Study of the Giant Magnetostrictive Actuator. Applied Mechanics and Materials, 568-570, 948-953.
https://doi.org/10.4028/www.scientific.net/AMM.568-570.948 |