全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

光谱分析技术在水产品重金属检测中的应用
Application of Spectroscopy Analysis Technology for Detecting the Heavy Metals in Aquatic Products

DOI: 10.12677/OE.2021.111001, PP. 1-7

Keywords: 水产品,重金属,光谱分析,检测
Aquatic Products
, Heavy Metals, Spectral Analysis, Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

水产品对铅、镉、汞、砷等重金属元素具有较强的富集能力,并且会通过食物链的传递与生物富集化,重金属会通过食物链进入人类体内。由金属离子产生的氧化应激引起的紊乱和损伤已经被人们发现,对人类生命造成严重的威胁。因此,水产品中的重金属含量的检测对评价水产品食用安全性以及保护生命健康具有重要意义。光谱分析法是各类水产品重金属高效的检测方法之一。本文对水产品中重金属的检测方法中光谱分析法,特别是原子吸收光谱法、原子发射光谱法、原子荧光光谱法、紫外–可见吸收光谱法、红外光谱法等进行了概述,并提出今后的光谱技术发展方向,为我国水产品重金属检测提供技术保障。
Aquatic products have a strong ability to accumulate heavy metals such as lead, cadmium, mer-cury, arsenic and other heavy metals. They will pass through the food chain and be bio-enriched, and will be ingested into humans. Disorders and damages produced by oxidative stress caused by metal-ions have been discovered, posing a serious threat to human life. Therefore, the detection of heavy metal content in aquatic products is of great significance for evaluating the edible safety of aquatic products and protecting life and health. Among the various methods for detecting heavy metals in aquatic products, spectral analysis is one of the most efficient methods for heavy metal detection in aquatic products. This article summarizes the spectroscopic analysis methods in the detection methods of heavy metals in aquatic products, especially the atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, and ultraviolet-visible absorption spectroscopy, etc., and proposes the future development direction of spectroscopy technology. This can provide technical support for the detection of heavy metals in aquatic products of our country.

References

[1]  Nagajyoti, P.C., Lee, K.D. and Sreekanth, T.V.M. (2018) Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environmental Chemistry Letters, 8, 199-216.
https://doi.org/10.1007/s10311-010-0297-8
[2]  Dubey, S., Shri, M., Gupta, A., Rani, V. and Chakrabarty, D. (2018) Toxicity and Detoxification of Heavy Metals during Plant Growth and Metabolism. Environmental Chemistry Letters, 16, 1169-1192.
https://doi.org/10.1007/s10311-018-0741-8
[3]  Arora, M., Kiran, B., Rani, S., Rani, A., Kaur, B. and Mittal, N. (2018) Heavy Metal Accumulation in Vegetable Irrigated with Water from Different Sources. Food Chemistry, 111, 811-815.
https://doi.org/10.1016/j.foodchem.2008.04.049
[4]  Kopp, B., Zalko, D. and Audebert, M. (2018) Genotoxicity of 11 Heavy Metals Detected as Food Contaminants in Two Human Cell Lines. Environmental and Molecular Mutagenesis, 59, 202-210.
https://doi.org/10.1002/em.22157
[5]  Pujol, L., Evrard, D., Serrano, K.G., Freyssinier, M., Cizsak, A.R., Gros, P., et al. (2014) Electrochemical Sensors and Devices for Electrochemical Assay in Water: The French Groups Contribution. Frontiers in Chemistry, 2, 19.
https://doi.org/10.3389/fchem.2014.00019
[6]  Moraes, P.M., Santos, F.A., Cavecci, B., Padilha, C.C., Vieira, J.C., Roldan, P.S., et al. (2013) GFAAS Determination of Mercury in Muscle Samples of Fish from Amazon, Brazil. Food Chemistry, 141, 2614-2617.
https://doi.org/10.1016/j.foodchem.2013.05.008
[7]  Tüzen, M. (2003) Determination of Heavy Metals in Fish Samples of the Middle Black Sea(Turkey)by Graphite Furnace atomic Absorption Spectrometry. Food Chemistry, 80, 19-123.
https://doi.org/10.1016/S0308-8146(02)00264-9
[8]  任兰, 叶瑾. 微波消解-石墨炉原子吸收光谱法测定鱼肉和河蚌中的重金属[J]. 化学分析计量, 2016, 25(3): 65-68. http://dx.chinadoi.cn/10.3969/j.issn.1008-6145.2016.03.017
[9]  李万杰, 马春, 张新欣, 薛芒, 董晓丽, 丁柏顺. 微波消解-石墨炉原子吸收法检测海产品中痕量重金属[J]. 大连工业大学学报, 2015, 34(2): 111-113.
[10]  Karami, H., Mousaci, M.F., Yamini, Y. and Shamsipur, M. (2004) On-Line Preconcentration and Simultaneous Determination of Heavy Metal Ions by Inductively Coupled Plasma-Atomic Emission Spectrometry. Analytica Chimica Acta, 509, 89-94.
https://doi.org/10.1016/j.aca.2003.12.022
[11]  谢华林. 微波消解电感耦合等离子体发射光谱法同时测定水产品中铅镉铬汞砷硒有害元素的研究[J]. 食品科学, 2002, 23(2): 108-110. http://dx.chinadoi.cn/10.3321/j.issn:1002-6630.2002.02.032
[12]  史永富, 田良良, 黄宣运, 顾润润, 袁瑞, 黄冬梅, 蔡友琼. 水产品中重金属检测能力验证关键技术控制与分析[J]. 中国渔业质量与标准, 2017, 7(2): 24-29.
[13]  Zu, W. and Wang, Z. (2016) Ultra-Trace Determination of Methylmercuy in Seafood by Atomic Fluorescence Spectrometry Coupled with Electrochemical Cold Vapor Generation. Journal of Hazardous Materials, 304, 467-473.
https://doi.org/10.1016/j.jhazmat.2015.11.018
[14]  张静, 程琳, 林琳, 陆剑锋, 潘道东, 陈伟. 基于谷胱甘肽识别系统的胶体金比色法快速检测水中重金属铅离子[J]. 食品科学, 2017, 38(24): 202-207. http://dx.chinadoi.cn/10.7506/spkx1002-6630-201724032
[15]  Chen, X.J. and Lei, X.X. (2009) Application of a Hybrid Variable Selection Method for the Determination of the Carbohydrate Content in Soy Milk Powder Using Visible and Near Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 57, 334-340.
https://doi.org/10.1021/jf8025887
[16]  Brown, M.R. (2011) Rapid Compositional Analysis of Oysters Using Visible and Near-Infrared Reflectance Spectroscopy. Aquaculture, 317, 233-239.
https://doi.org/10.1016/j.aquaculture.2011.04.017
[17]  Chen, X.J., Wu, D., Guan, X.C., Liu, B., Liu, G., Yan, M.C., et al. (2013) Feasibility of Infrared and Raman Spectroscopies for Identification of Juvenile Black Seabream (Sparus microcephalus) Intoxicated by Heavy Metals. Journal of Agricultural and Food Chemistry, 61, 12429-12435.
https://doi.org/10.1021/jf403276y
[18]  Pu, H.B., Liu, D., Wang, L. and Sun, D.-W. (2016) Soluble Solids Content and pH Prediction and Maturity Discrimination of Lychee Fruits Using Visible and Near Infrared Hyperspectral Imaging. Food Analytical Methods, 9, 235-244.
https://doi.org/10.1007/s12161-015-0186-7
[19]  林冬秀, 刘科, 陈孝敬. 基于近红外光谱的重金属污染泥蚶的快速检测[J]. 中国食品学报, 2015, 15(4): 190-195. http://dx.chinadoi.cn/10.16429/j.1009-7848.2015.04.025
[20]  Mages, M., Bandow, N., Küster, E., Brack, W. and von Tümpling, W. (2008) Zinc and Cadmium Accumulation in Single Zebrafish (Danio rerio) Embryos—A Total Reflection X-Ray Fluorescence Spectrometry Application. SpectrochimicaActa Part B: Atomic Spectroscopy, 63, 1443-1449.
https://doi.org/10.1016/j.sab.2008.10.015
[21]  Szoboszlai, N., Polgári, Z., Mihucz, V.G. and Záray, G. (2009) Recent Trends in Total Reflection X-Ray Fluorescence Spectrometry for Biological Applications. Analytica Chimica Acta, 633, 1-18.
https://doi.org/10.1016/j.aca.2008.11.009
[22]  Galbacs, G. (2015) A Critical Review of Recent Progress in Analytical Laser-Induced Breakdown Spectroscopy. Analytical and Bioanalytical Chemistry, 407, 7537-7562.
https://doi.org/10.1007/s00216-015-8855-3
[23]  Su, L., Shi, W., Chen, X., Meng, L., Yuan, L., Chen, X. and Huang, G. (2021) Simultaneously and Quantitatively Analyze the Heavy Metals in Sargassum fusiforme by Laser-Induced Breakdown Spectroscopy. Food Chemistry, 338, Article ID: 127797.
https://doi.org/10.1016/j.foodchem.2020.127797
[24]  Yuan, L.-M., Chen, X., Lai, Y., Chen, X., Shi, Y., Zhu, D. and Li, L. (2018) A Novel Strategy of Clustering Informative Variables for Quantitative Analysis of Potential Toxics Element in TegillarcaGranosa Using Laser-Induced Breakdown Spectroscopy. Food Analytical Methods, 11, 1405-1416.
https://doi.org/10.1007/s12161-017-1096-7
[25]  郭珍珠, 陈孝敬, 袁雷明, 陈熙, 朱德华, 杨硕. 共识模型用于激光诱导击穿光谱检测泥蚶重金属铜的含量[J]. 光子学报, 2018, 47(8): 112-117. http://dx.chinadoi.cn/10.3788/gzxb20184708.0847015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133