全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高产谷胱甘肽酵母的诱变筛选及发酵条件的优化
Mutagenesis Screening of High-Yielding Glutathione Yeast and Optimization of Fermentation Conditions

DOI: 10.12677/AMB.2021.101002, PP. 7-13

Keywords: 谷胱甘肽,诱变育种,抗性筛选,培养条件优化
Glutathione
, Mutation Breeding, Resistance Screening, Culture Conditions Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了更好的利用微生物发酵合成谷胱甘肽(glutathione, GSH),本研究通过对产朊假丝酵母菌株进行紫外诱变,并选取抗性筛选物乙硫氨酸对出发菌株进行致死率实验,筛选到一株高产谷胱甘肽突变菌株。采用5因素5水平的正交设计实验对发酵合成GSH的培养条件中培养温度、摇床转速、蛋白胨和硫酸铵浓度之比、初始pH值及接种量的组成进行优化。结果表明:发酵条件为培养温度26℃、200 r/min、蛋白胨和硫酸铵浓度之比5:2、初始pH值5.0及接种量10%时突变菌株的谷胱甘肽产量最高,达到了187.31 mg/L,即有利于菌体合成GSH。
In order to synthesize glutathione (GSH) by microbial fermentation, a mutant strain with high glutathione yield was screened in this study through UV mutagenesis of Candida utilis and lethality test on the original strain by selecting ethionine as resistant screening material. The orthogonal design experiment with 5 factors and 5 levels was used to optimize the fermentation conditions of glutathione synthesis, including the culture temperature, the rotation speed of the shaking table, the ratio of peptone and ammonium sulfate concentration, the initial pH value and the composition of inoculation amount. The results showed that when the fermentation temperature was 26?C, 200 r/min, the ratio of tone and ammonium sulfate was 5:2, the initial pH value was 5.0 and the inoculation amount was 10%, the glutathione yield of the mutant strain was the highest, which reached 187.31 mg/L, which was conducive to the synthesis of GSH.

References

[1]  Pastore, A., Federici, G., Bertini, E., et al. (2003) Analysis of Glutathione: Implication in Redox and Detoxification. International Journal of Clinical Chemistry, 333, 19-39.
https://doi.org/10.1016/S0009-8981(03)00200-6
[2]  Lu, S.C. (2013) Glutathione Synthesis. Biochimica et Biophysica Acta, 1830, 3143-3153.
https://doi.org/10.1016/j.bbagen.2012.09.008
[3]  Homma, T. and Fujii, J. (2015) Application of Glutathione as Anti-Oxidative and Anti-Aging Drugs. Current Drug Metabolism, 16, 560-571.
https://doi.org/10.2174/1389200216666151015114515
[4]  Haddad, J.J. and Harb, H.L. (2004) L-γ-glutamyl-l-cysteinyl-glycine (Glutathione; GSH) and GSH-Related Enzymes in the Regulation of Pro- and Anti-Inflammatory Cytokines: A Signaling Transcriptional Scenario for Redox(y) Immunologic Sensor(s)? Molecular Immunology, 42, 987-1014.
https://doi.org/10.1016/j.molimm.2004.09.029
[5]  Lu, S.C. (2009) Regulation of Glutathione Synthesis. Molecular Aspects of Medicine, 30, 42-59.
https://doi.org/10.1016/j.mam.2008.05.005
[6]  Maher, P. (2018) Potentiation of Glutathione Loss and Nerve Cell Death by the Transition Metals Iron and Copper: Implications for Age-Related Neurodegenerative Diseases. Free Radical Biology and Medicine, 115, 92-104.
https://doi.org/10.1016/j.freeradbiomed.2017.11.015
[7]  Paula, A., Pabla, A., Pablo, M., et al. (2006) Iron and Glutathione at the Crossroad of Redox Metabolism in Neurons. Biological Research, 39, 157-165.
https://doi.org/10.4067/S0716-97602006000100017
[8]  Dr?ge, W. (1993) Cysteine and Glutathione Deficiency in AIDS Patients: A Rationale for the Treatment with N-Acetyl-Cysteine. Pharmacology, 46, 61-65.
https://doi.org/10.1159/000139029
[9]  Dr?ge, W., et al. (1994) Functions of Glutathione and Glutathione Disulfide in Immunology and Immunopathology. FASEB Journal, 8, 96.
https://doi.org/10.1096/fasebj.8.14.7958618
[10]  Honda, Y., Kessoku, T., Sumida, Y., et al. (2017) Efficacy of Glutathione for the Treatment of Nonalcoholic Fatty Liver Disease: An Open-Label, Single-Arm, Multicenter, Pilot Study. BMC Gastroenterology, 17, 96.
https://doi.org/10.1186/s12876-017-0652-3
[11]  Sanabria, J.R., et al. (2016) Glutathione Species and Metabolomic Prints in Subjects with Liver Disease as Biological Markers for the Detection of Hepatocellular Carcinoma. HPB, 18, 979-990.
https://doi.org/10.1016/j.hpb.2016.09.007
[12]  Rodolfo, S., Roberto, E. and Luca, G. (2016) Glutathione in the Treatment of Liver Diseases: Insights from Clinical Practice. Minerva Gastroenterologica e Dietologica, 62, 316-324.
[13]  Morris, P.E. and Bernard, G.R. (1994) Significance of Glutathione in Lung Disease and Implications for Therapy. The American Journal of the Medical Sciences, 307, 119-127.
https://doi.org/10.1097/00000441-199402000-00010
[14]  Lutchmansingh, F., Hsu, J.W., Bennett, F.I., et al. (2018) Glutathione Metabolism in Type 2 Diabetes and Its Relationship with Microvascular Complications and Glycemia. PLoS ONE, 13, e0198626.
https://doi.org/10.1371/journal.pone.0198626
[15]  Ankita, B. and Celeste, S.M. (2018) Glutathione Metabolism in Cancer Progression and Treatment Resistance. The Journal of Cell Biology, 217, 2291-2298.
https://doi.org/10.1083/jcb.201804161
[16]  Ehrlich, K., Ehrlich, K., Auml, et al. (2007) Design, Synthesis and Properties of Novel Powerful Antioxidants, Glutathione Analogues. Free Radical Research, 41, 779-787.
https://doi.org/10.1080/10715760701348611
[17]  Ankita, B. and Celeste, S.M. (2018) Glutathione Metabolism in Cancer Progression and Treatment Resistance. The Journal of Cell Biology, 217, 2291-2298.
https://doi.org/10.1083/jcb.201804161
[18]  刘莉君, 程茂基, 杜波, 等. 紫外线诱变选育高产富硒酵母的研究[J]. 饲料博览(技术版), 2007(6): 29-30.
[19]  江洁, 单立峰, 吴耘红, 等. 高产谷胱甘肽酵母菌株的筛选和抗乙硫氨酸突变株的选育[J]. 安徽农业科学, 2009, 37(1): 227-229.
[20]  Tang, C.H. and Cai, S.X. (2006) Application of the Combined Use of Uniform Experimental Design and Orthogonal Experimental Design in Biomedicial Engineering. Journal of Biomedical Engineering, 23, 1228-1231.
[21]  李利军, 马英辉, 卢美欢, 等. 一株假丝酵母合成GSH的发酵条件优化[J]. 中国酿造, 2012, 31(7): 41-47.
[22]  Rahman, I., Kode, A. and Biswas, S.K. (2006) Assay for Quantitative Determination of Glutathione and Glutathione Disulfide Levels Using Enzymatic Recycling Method. Nature Protocols: Recipes for Researchers, 1, 3159-3165.
https://doi.org/10.1038/nprot.2006.378
[23]  黎明, 池娇, 张波, 等. 高产谷胱甘肽酵母菌筛选及发酵条件研究[J]. 食品与发酵科技, 2013, 49(2): 9-12+73.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133