全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

直接甲醇燃料电池阳极催化剂研究现状及展望
Research Progress and Prospect of Anode Catalysts for Direct Methanol Fuel Cells

DOI: 10.12677/HJCET.2021.112009, PP. 66-75

Keywords: 直接甲醇燃料电池,贵金属催化剂,非贵金属催化剂
Direct Methanol Fuel Cell
, Noble Metal Catalyst, Non-Noble Metal Catalyst

Full-Text   Cite this paper   Add to My Lib

Abstract:

直接甲醇燃料电池(DMFC)因其具有能量密度高、绿色环保和体积轻便等优势得到广泛关注,其中阳极催化剂活性是决定燃料电池性能、寿命的关键因素。近年来,研究者围绕提高阳极催化剂性能和降低催化剂成本这两个方面展开研究,推动了DMFC的蓬勃发展。本文介绍了电催化剂的催化机理及其分类,详细综述了贵金属催化剂和非贵金属催化剂的合成方法,结合当前研究进展对甲醇电催化剂未来的发展趋势进行展望。
Direct methanol fuel cell (DMFC) has attracted wide attention due to its advantages of high energy density, environmental protection, and lightness. Among them, the methanol oxidation electrocatalyst is a key factor that determined the performance, life and cost of fuel cells. In recent years, researchers have carried out a lot of researches on improving the activity of anode catalysts and reducing catalyst cost, which has promoted the vigorous development of DMFC. In this paper, the catalytic mechanism and classification of electrocatalysts are introduced, the synthesis methods of noble metal catalysts and non-noble metal catalysts are reviewed in detail, and the research progress of methanol electrocatalyst based on the current research is prospected.

References

[1]  周鸿宇, 张甜甜, 芦娅妮. 煤化工技术的发展与新型煤化工技术[J]. 化工设计通讯, 2018, 44(12): 15.
http://dx.chinadoi.cn/10.3969/j.issn.1003-6490.2018.12.014
[2]  赵俊学, 马成, 胡冰, 邹冲, 刘军利, 刘启航. 以低温干馏为基础的低阶煤分质高效利用技术分析[J]. 煤炭加工与综合利用, 2017(6): 1-6.
http://dx.chinadoi.cn/10.16200/j.cnki.11-2627/td.2017.06.001
[3]  刘洋洋, 孙燕芳, 靳文, 李奎. 直接甲醇燃料电池阳极催化剂的研究进展[J]. 电源技术, 2019, 43(8): 1397-1402.
http://dx.chinadoi.cn/10.3969/j.issn.1002-087X.2019.08.044
[4]  Tong, Y., Yan, X., Liang, J. and Dou, S.X. (2019) Metal-Based Electrocatalysts for Methanol Electro-Oxidation: Progress, Opportunities, and Challenges. Small, 2019, Article ID: 1904126.
https://doi.org/10.1002/smll.201904126
[5]  Araujo, R.B., Daniei, M.Y., Santos, E., Cornell, A. and Pettersson, L.G.M. (2020) Elucidating the Role of Ni to Enhance the Methanol Oxidation Reaction on Pd Electrocatalysts. Electrochemical Acta, 360, Article ID: 136954.
https://doi.org/10.1016/j.electacta.2020.136954
[6]  Jo, W.K., Moru, S., Lee, D.E. and Tonda, S. (2020) Cobalt- and Iron-Coordinated Graphitic Carbon Nitride on Reduced Grapheme Oxide: A Nonprecious Bimetallic M-Nx-C Ana-logue Electrocatalyst for Efficient Oxygen Reduction Reaction in Acidic Media. Applied Surface Science, 531, Article ID: 147367.
https://doi.org/10.1016/j.apsusc.2020.147367
[7]  Fard, H.F., Khodaverdi, M., Pourfayaz, F. and Ahmadi, M.H. (2020) Application of N-Doped Carbon Nanotube-Supported Pt-Ru as Electrocatalyst Layer in Passive Direct Methanol Fuel Cell. International Journal of Hydrogen Energy, 45, 25307-25316.
https://doi.org/10.1016/j.ijhydene.2020.06.254
[8]  Zhang, T., Sun, Y., Li, X., Li, X.Y., Liu, D.L., Liu, G.Q., et al. (2020) PtPdAg Hollow Nanodendrites: Template-Free Synthesis and High Electrocatalytic Activity for Methanol Oxidation Reaction. Small Methods, 4, Article ID: 1900709.
https://doi.org/10.1002/smtd.201900709
[9]  Xiao, F., Xu, G.L., Sun, C.J., Xu, M.J., Wen, W., Wang, Q., et al. (2019) Nitrogen-Coordinated Single Iron Atom Catalysts Derived from Metal Organic Frameworks for Oxygen Reduc-tion Reaction. Nano Energy, 61, 60-68.
https://doi.org/10.1016/j.nanoen.2019.04.033
[10]  Sheng, H.Y., Xu, J.H., Liang, X.D., Pan, Z.-W., Tong, Y.-X., Wu, M.M., et al. (2014) Correction: Cu2O Template Synthesis of High-Performance PtCu Alloy Yolk-Shell Cube Catalysts for Direct Methanol Fuel Cells. Chemical Communications, 50, 12337-12340.
https://dx.doi.org/10.1039/C4CC04108A
[11]  Zeng, Y.F., Wang, Y.Y., Huang, G., Chen, C., Huang, L.L., Chen, R., et al. (2018) Porous CoP Nanosheets Converted from Layered Double Hydroxides with Superior Electrochemical Activity for Hydrogen Evolution Reactions at Wide pH Ranges. Chemical Communications, 54, 1465-1468.
[12]  Ramli, Z., Kamarudin, S.K., Basri, S. and Zainoodin, A.M. (2020) The Potential of Novel Carbon Nanocages as a Carbon Support for an Enhanced Methanol Electro, Oxidation Reaction in a Direct Methanol Fuel Cell. International Journal of Energy Research, 44, 10071-10086.
https://doi.org/10.1002/er.5621
[13]  Li, H., Kang, D., Wang, H. and Wang, R. (2011) Carbon-Supported PtRuCo Nanoparticles with Low-Noble-Metal Content and Superior Catalysis for Ethanol Oxidization. International Journal of Electrochemical Science, 6, 1058-1065.
[14]  Lim, D.H., Choi, D.H., Lee, W.D. and Lee, H. I. (2009) A New Synthesis of a Highly Dispersed and CO Tolerant PtSn/C Electrocatalyst for Low-Temperature Fuel Cell; Its Electrocatalytic Activity and Long-Term Durability. Applied Catalysis B: Environmental, 89, 484-493.
https://doi.org/10.1016/j.apcatb.2009.01.011
[15]  Wang, S., Yang, G. and Yang, S. (2015) Pt-frame@Ni quasi Core-Shell Concave Octahedral PtNi3 Bimetallic Nanocrystals for Electrocatalytic Methanol Oxidation and Hydrogen Evolution. The Journal of Physical Chemistry C, 119, 27938-27945.
https://doi.org/10.1021/acs.jpcc.5b10083
[16]  Hoseini, S.J., Bahrami, M. and Dehghani, M. (2014) Formation of Snowman-Like Pt/Pd Thin Film and Pt/Pd/Reduced-Graphene Oxide Thin Film at Liquid-Liquid Interface by Use of Organometallic Complexes, Suitable for Methanol Fuel Cells. RSC Advances, 4, 13796-13804.
https://doi.org/10.1039/C4RA01625D
[17]  Ding, L.X., Li, G.R., Wang, Z.L., Liu, Z.Q., Liu, H. and Tong, Y.X. (2012) Porous Ni@Pt Core-Shell Nanotube Array Electrocatalyst with High Activity and Stability for Methanol Oxida-tion. Chemistry-A European Journal, 18, 8386-8391.
https://doi.org/10.1002/chem.201200009
[18]  Wu, S., Liu, J., Liang, D., Sun, H., Ye, Y., Tian, Z. and Liang, C. (2016) Photo-Excited in Situ Loading of Pt Clusters onto rGO Immobilized SnO2 with Excellent Catalytic Performance toward Methanol Oxidation. Nano Energy, 26, 699-707.
https://doi.org/10.1016/j.nanoen.2016.06.038
[19]  Yang, L., Ge, J., Liu, C., Wang, G. and Xing, W. (2017) Approaches to Improve the Performance of Anode Methanol Oxida-tion Reaction—A Short Review. Current Opinion in Electrochemistry, 4, 83-88.
https://doi.org/10.1016/j.coelec.2017.10.018
[20]  Ren, X., Wang, Y., Liu, A., Zhang, Z.H., Lv, Q.Y. and Liu, B.H. (2020) Current Progress and Performance Improvement of Pt/C Catalysts for Fuel Cells. Journal of Materials Chemistry A, 8, 24284-24306.
https://doi.org/10.1039/D0TA08312G
[21]  Baneshi, J., Haghighi, M., Jodeiri, N., et al. (2013) Homogeneous Precipitation and Urea-Nitrate Combustion Preparation of Nanostructured CuO/CeO2/ZrO2/Al2O3 Oxides used in Hy-drogen Production from Methanol for Fuel Cells. Particulate Science and Technology, 2018, Article ID: 1455778.
[22]  Zhang, F.F., Wang, Z.Y., Xu, K., Xia, J.F., Liu, Q.Y. and Wang, Z.H. (2018) Highly Dispersed Ul-trafine Pt Nanoparticles on Nickel-Cobalt Layered Double Hydroxide Nanoarray for Enhanced Electrocatalytic Methanol Oxidation. International Journal of Hydrogen Energy, 43, 16302-16310.
https://doi.org/10.1016/j.ijhydene.2018.07.059
[23]  王萌. 质子交换膜燃料电池设计与综合优化研究[D]: [博士学位论文]. 北京: 北京科技大学, 2019.
[24]  王子豪. CeO2/G复合物为载体的直接甲醇燃料电池阳极催化剂性能研究[D]: [硕士学位论文]. 包头: 内蒙古科技大学, 2019.
[25]  苏敏, 贺春林, 马国峰, 鲁志颖. 直接甲醇燃料电池阳极催化剂性能[J]. 沈阳大学学报(自然科学版), 2019, 31(3): 178-183.
[26]  罗远来, 梁振兴, 廖世军. 直接甲醇燃料电池阳极催化剂研究进展[J]. 催化学报, 2010, 31(2): 141-149. http://dx.chinadoi.cn/10.3724/SP.J.1088.2010.90740
[27]  Dobrovetska, O., Saldan, I., Lubomir, O., Karlsson, D., Sahlberg, M.H., Semenyuk, Y., et al. (2020) Electrocatalytic Activity of Pd-Au Nanoalloys during Methanol Oxidation Reaction. International Journal of Hydrogen Energy, 45, 4444-4456.
https://doi.org/10.1016/j.ijhydene.2019.12.029
[28]  Chen, W., Li, D., Peng, C., Qian, G., Duan, X.Z., Chen, D., et al. (2017) Mechanistic and Kinetic Insights into the Pt-Ru Synergy during Hydrogen Generation from Ammonia Borane over PtRu/CNT Nanocatalysts. Journal of Catalysis, 356, 186-196.
https://doi.org/10.1016/j.jcat.2017.10.016
[29]  Guo, X., Yang, L., Shen, B., Wei, Y.J., Yang, Y., Yang, C.Z., et al. (2020) Ultrafine Pd Nanocrystals Anchored onto Single-Walled Carbon Nanohorns: A Highly-Efficient Multifunctional Electrocatalyst with Ultra-Low Pd Loading for Formic Acid and Methanol Oxidation. Materials Chemistry and Physics, 250, Article ID: 123167.
https://doi.org/10.1016/j.matchemphys.2020.123167
[30]  Mai, L.N.T., Bach, L.G., Bui, Q.B. and Nhac-Vu, H.-T. (2020) Ultra-Small Platinum Nanoparticles Deposited Graphene Supported on 3D Framework as Self-Supported Catalyst for Methanol Oxidation. Synthetic Metals, 263, Article ID: 116355.
https://doi.org/10.1016/j.synthmet.2020.116355
[31]  Zhang, P., Fan, C., Wang, R., Xu, C.X., Cheng, J.G., Wang, L.C., et al. (2019) Pd/MXene (Ti3C2Tx)/Reduced Graphene Oxide Hybrid Catalyst for Methanol Electro-Oxidation. Nanotechnology, 31, 09LT01.
https://doi.org/10.1088/1361-6528/ab5609
[32]  Li, M., Fang, Y., Zhang, G., Cui, P., Yang, Z.Z. and He, J.B. (2020) CARBON-Supported Pt5P2 Nanoparticles Used as a High-Performance Electrocatalyst for Methanol Oxidation Reaction. Journal of Materials Chemistry A, 8, 10433-10438.
https://doi.org/10.1039/D0TA02300K
[33]  Qiao, Y., Liu, Y., Liu, Y., Dong, Q., Zhong, G., Wang, X., et al. (2020) Thermal Radiation Synthesis of Ultrafine Platinum Nanoclusters toward Methanol Oxidation. Small Methods, 4, Article ID: 2000265.
https://doi.org/10.1002/smtd.202000265
[34]  Thota, A., Boga, K., Narayan, R., Bojja, S. and Rao, C.R.K. (2019) Synthesis of Star Shaped Electroactive, LEB State Aniline Oligomer and Its High Performing Pt and Pt-Au Nanocatalyst for MOR. International Journal of Hydrogen Energy, 44, 11066-11078.
https://doi.org/10.1016/j.ijhydene.2019.02.207
[35]  Shi, H., Liao, F., Zhu, W., Shao, C.R. and Shao, M.W. (2020) Effective PtAu Nanowire Network Catalysts with Ultralow Pt Content for Formic Acid Oxidation and Methanol Oxidation. International Journal of Hydrogen Energy, 45, 16071-16079.
https://doi.org/10.1016/j.ijhydene.2020.04.003
[36]  Pitussi, I., Schechter, A., Teller, H., Natan, A. and Kornweitz, H. (2020) Tailored Pt Coatings on Metallic Tin-An Effective Catalyst for Fuel Cells Anodes. Journal of the Electro-chemical Society, 167, Article ID: 044512.
https://doi.org/10.1149/1945-7111/ab754b
[37]  Burhan, H., Ay, H., Kuyuldar, E. and Sen, F. (2020) Monodis-perse Pt-Co/GO Anodes with Varying Pt: Co Ratios as Highly Active and Stable Electrocatalysts for Methanol Elec-trooxidation Reaction. Scientific Reports, 10, Article No. 6114.
https://doi.org/10.1038/s41598-020-63247-6
[38]  An, Y., Ijaz, H., Huang, M., Qu, J.Q. and Hu, S. (2020) The One-Pot Synthesis of CuNi Nanoparticles with Ni-Rich Surface for Electrocatalytic Methanol Oxidation Reaction. Dalton Transactions, 49, 1646-1651.
https://doi.org/10.1039/C9DT04661E
[39]  Song, T., Gao, F., Zhang, Y., Chen, C.Y., Wang, C., Li, S.J., et al. (2020) Efficient Polyalcohol Oxidation Electrocatalysts Enabled by PtM (M=Fe, Co, Ni) Nanocubes Surrounded by (200) Crystal Facets. Nanoscale, 12, 9842-9848.
https://doi.org/10.1039/D0NR00163E
[40]  Ouyang, Y., Cao, H., Wu, H., Wu, D.B., Wang, F.Q., Fan, X.J., et al. (2020) Tuning Pt-Skinned PtAg Nanotubes in Nanoscales to Efficiently Modify Electronic Structure for Boosting Performance of Methanol Electrooxidation. Applied Catalysis B: Environmental, 265, Article ID: 118606.
https://doi.org/10.1016/j.apcatb.2020.118606
[41]  Liang, Z., Song, L., Elnabawy, A.O., Marinkovic, N., Mav-rikakis, M. and Adzic, R.R. (2020) Platinum and Palladium Monolayer Electrocatalysts for Formic Acid Oxidation. Top-ics in Catalysis, 63, 742-749.
https://doi.org/10.1007/s11244-020-01264-5
[42]  Khan, I.A., Khan, L., Khan, S.I. and Badshah, A. (2020) Shape-Control Synthesis of PdCu Nanoparticles with Excellent Catalytic Activities for Direct Alcohol Fuel Cells Appli-cation. Electrochimica Acta, 349, Article ID: 136381.
https://doi.org/10.1016/j.electacta.2020.136381
[43]  Bian, T., Zhang, H., Jiang, Y.Y., Jin, C.H., Wu, J.B., Yang, H., et al. (2015) Epitaxial Growth of Twinned Au-Pt Core-Shell Star-Shaped Decahedra as Highly Durable Electrocata-lysts. Nano Letters, 15, 7808-7815.
https://doi.org/10.1021/acs.nanolett.5b02960
[44]  Shi, M.Q., Song, G.H., Yang, P.P., Chu, Y.-Q. and Ma, C.-A. (2015) A New Biomass Template to Prepare Multi-Channel Structure of WO3 and Its Application for Methanol Electro-Oxidation. Materials Letters, 153, 124-127.
https://doi.org/10.1016/j.matlet.2015.04.014
[45]  Arammesh, N., Hoseini, S.J., Shansavari, H.R., Masoud Nabav-izadeh, S., Bahrami, M., Reza Halvagar, M., et al. (2020) PtSn Nanoalloy Thin Films as Anode Catalysts in Methanol Fuel Cells. Inorganic Chemistry, 59, 10688-10698.
https://doi.org/10.1021/acs.inorgchem.0c01147
[46]  Khotseng, L., Bangisa, A., Modibedi, R.M. and Linkov, V. (2016) Electrochemical Evaluation of Pt-Based Binary Catalysts on Various Supports for the Direct Methanol Fuel Cell. Electrocatalysis, 7, 1-12.
https://doi.org/10.1007/s12678-015-0282-x
[47]  Wang, W., Lu, X., Zhu, M., Cao, Z., Li, C., Gao, Y., et al. (2015) Rod-Shaped CeO2 Intercalated Graphene for Supporting Pt Composite as Anode Catalysts for DMFCs. Electrochimica Acta, 176, 1338-1342.
https://doi.org/10.1016/j.electacta.2015.07.057
[48]  Lei, W., Li, M., He, L., Meng, X., Mu, Z., Yu, Y., et al. (2020) A General Strategy for Bimetallic Pt-Based Nano-Branched Structures as Highly Active and Stable Oxygen Reduction and Methanol Oxidation Bifunctional Catalysts. Nano Research, 13, 638-645.
https://doi.org/10.1007/s12274-020-2666-3
[49]  Guo, R.H., Wang, J., An, S.L., Zhang, J., Zhou, G. and Guo, L. (2020) Effect of Cerium Oxide Prepared under Different Hydrothermal Time on Electrocatalytic Performance of Pt-Based Anode Catalysts. Journal of Rare Earths, 38, 384-394.
https://doi.org/10.1016/j.jre.2019.05.010
[50]  Guo, T., Xiang, H., Li, W., Li, H., Chen, H., Liu, S. et al. (2020) Synthesis of Ultrathin and Composition-Tunable PdPt Porous Nanowires with Enhanced Electrocatalytic Performance. ACS Sustainable Chemistry & Engineering, 8, 2901-2909.
https://doi.org/10.1021/acssuschemeng.9b07189
[51]  Sahoo, M.K., Shanmugam, R., Umeshbabu, E. and Ranga Rao, G. (2020) Activated ZrC Promotes the Methanol Electro-oxidation Activity and Enhances Poison Tolerance of Pt Nanoparticles in Acidic Medium. ChemistrySelect, 5, 7205-7216.
https://doi.org/10.1002/slct.202001581
[52]  Wang, H., Zhang, K., Qiu, J., Wu, J., Shao, J., Wang, H., et al. (2020) Ternary PtFeCo Alloys on Grapheme with High Electrocatalytic Activities for Methanol Oxidation. Nanoscale, 12, 9824-9832.
https://doi.org/10.1039/D0NR00757A
[53]  Zhao, F., Ye, J.Y., Yuan, Q., Yang, X., and Zhou, Z. (2020) Realizing a CO-Free Pathway and Enhanced Durability in Highly Dispersed Cu-Doped PtBi Nanoalloys towards Methanol Full Electrooxidation. Journal of Materials Chemistry A, 8, 11564-11572.
https://doi.org/10.1039/D0TA03330H
[54]  Zheng, Y., Zhai, Y., Tu, M., Huang, X., Shu, M., Guo, X., et al. (2020) Bimetals and Semiconductor Support Synergistic Interaction Effects for Superior Electrochemical Catalysis. Na-noscale, 12, 4719-4728.
https://doi.org/10.1039/C9NR09608F
[55]  Yuan, C., Gao, H., Xu, Q., Song, X., Zhai, C. and Zhu, M. (2020) Pt Decorated 2D/3D Heterostructure of Bi2WO6 Nanosheet/Cu2S Snowflake for Improving Electrocatalytic Methanol Oxi-dation with Visible-Light Assistance. Applied Surface Science, 521, Article ID: 146431.
https://doi.org/10.1016/j.apsusc.2020.146431
[56]  Ren, B., Lu, J., Wang, Y., Gu, X., Xu, B.B., Fu, Y., et al. (2020) Half-Sphere Shell Supported Pt Catalyst for Electrochemical Methanol Oxidation. Journal of the Electrochemical Society, 167, Article ID: 084510.
https://doi.org/10.1149/1945-7111/ab8dde
[57]  Basumatary, P., Konwar, D. and Yoon, Y.S. (2020) Conductivi-ty-Tailored PtNi/MoS2 3D Nanoflower Catalyst via Sc doping as a Hybrid Anode for a Variety of Hydrocarbon Fuels in Proton Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 267, Article ID: 118724.
https://doi.org/10.1016/j.apcatb.2020.118724
[58]  Guo, J., Li, F., Sun, Y., Zhang, X. and Tang, L. (2015) Oxygen-Incorporated MoS2 Ultrathin Nanosheets Grown on Graphene for Efficient Electrochemical Hydrogen Evolution. Journal of Power Sources, 291, 195-200.
https://doi.org/10.1016/j.jpowsour.2015.05.034
[59]  Javan, H., Asghari, E., Ashassi, S.H. and Moradi-Haghighi, M. (2020) Nickel Nanoparticles Decorated on Carbon Quantum Dots as a Novel Non-Platinum Catalyst for Methanol Oxidation; A Green, Low-Cost, Electrochemically-Synthesized Electrocatalyst. Chemical Engineering science, 217, Arti-cle ID: 115534.
https://doi.org/10.1016/j.ces.2020.115534

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133