全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

形貌可控且高度分散氟化镁的制备及方法研究
Research on Preparation and Method of Highly Dispersed Magnesium Fluoride with Controllable Shape

DOI: 10.12677/AAC.2021.112004, PP. 39-46

Keywords: 氟化镁,螯合剂,酸碱度,分散性
Magnesium Fluoride
, Chelating Reagent, PH, Dispersion

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文总结了不同形貌氟化镁的合成方法,包括溶胶凝胶法、微波合成法、二氧化硅模板法等。以酒石酸钠盐、乙二胺四乙酸二钠盐、柠檬酸钠盐为螯合剂,采用水热法成功制备了高度均匀的三维花状,且具有较高分散性的氟化镁微米颗粒。利用x射线衍射、扫描电子显微镜对材料进行了表征。同时调控溶液的PH值,以达到纯化氟化镁颗粒的效果。结果表明溶液的酸碱性对氟化镁的纯化起一定的作用。
This article summarizes the synthesis methods of magnesium fluoride with different morphologies, including sol-gel method, microwave synthesis method, and silica template method. Using sodium tartrate, ethylenediaminetetraacetic acid disodium salt, and sodium citrate as chelating agents, the hydrothermal method successfully prepared highly uniform three-dimensional flower-like and highly dispersible magnesium fluoride micron particles. The material was characterized by x-ray diffraction and scanning electron microscope. At the same time, the PH value of the solution is adjusted to achieve the effect of purifying magnesium fluoride particles. The results show that the acidity and basicity of the solution play a certain role in the purification of magnesium fluoride.

References

[1]  Zhang, L., Han, P., Zhang, C., Dong, M., Yang, Y. and Gu, X. (2011) Density Functional Theory Study on the Stability and Electronic Properties of MgF2 Surfaces. Acta Physico-Chimica Sinica, 27, 1609-1614.
[2]  Xu, H. and Lv, J. (2002) Synthesis of Difluoromethane over Magnesium Fluoride (MgF2) Based Catalyst. Industrial Catalysis, 5, 10.
[3]  Nakamura, F., Kato, T., Okada, G., Kawano, N., Kawaguchi, N., Fukuda, K. and Yanagida, T. (2018) Scintillation, Dosimeter and Optical Properties of MgF2 Transparent Ceramics Doped with Gd3+. Materials Research Bulletin, 98, 83-88.
https://doi.org/10.1016/j.materresbull.2017.09.058
[4]  Chen, F., Yuan, L. and Johnston, R.L. (2012) Low-Loss Optical Magnetic Metamaterials on Ag-Au Bimetallic Fishnets. Journal of Magnetism and Magnetic Materials, 324, 2625-2630.
https://doi.org/10.1016/j.jmmm.2012.03.025
[5]  Agirrezabal-Telleria, I., Guo, Y., Hemmann, F., Arias, P.L. and Kemnitz, E. (2014) Dehydration of Xylose and Glucose to Furan Derivatives Using Bifunctional Partially Hydroxylated MgF2 Catalysts and N2-Stripping. Catalysis Science & Technology, 4, 1357-1368.
https://doi.org/10.1039/C4CY00129J
[6]  Ji, Z., Hao, L., Wang, H. and Chen, R. (2019) Analysis and Research on the Formative Factors and Properties of Nano-MgF2 Crystals with Different Morphologies. Polyhedron, 157, 136-145.
https://doi.org/10.1016/j.poly.2018.09.061
[7]  Sevonkaev, I. and Matijevic, E. (2009) Formation of Magnesium Fluoride Particles of Different Morphologies. Langmuir, 25, 10534-10539.
https://doi.org/10.1021/la901307t
[8]  Nandiyanto, A.B., Iskandar, F., Ogi, T. and Okuyama, K. (2010) Nanometer to Submicrometer Magnesium Fluoride Particles with Controllable Morphology. Langmuir, 26, 12260-12266.
https://doi.org/10.1021/la101194w
[9]  Krishna Murthy, J., Gro?, U., Rüdiger, S., Kemnitz, E. and Winfield, J.M. (20060 Sol-Gel-Fluorination Synthesis of Amorphous Magnesium Fluoride. Journal of Solid State Chemistry, 179, 739-746.
https://doi.org/10.1016/j.jssc.2005.11.033
[10]  Xu, Z., Kang, X., Li, C., Hou, Z., Zhang, C., Yang, D., Li, G. and Lin, J. (2010) Ln(3+) (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) Nano/Microcrystals with Multiform Morphologies: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties. Inorganic Chemistry, 49, 6706-6715.
https://doi.org/10.1021/ic100953m.
[11]  Ji, Z., Bao, L., Wang, H. and Chen, R. (2017) Preparation of Super-Hydrophobic Antireflective Films by Rod-Like MgF2 and SiO2 Mixed Sol. Materials Letters, 207, 21-24.
https://doi.org/10.1016/j.matlet.2017.07.050
[12]  Nandiyanto, A.B., Ogi, T. and Okuyama, K. (2014) Control of the Shell Structural Properties and Cavity Diameter of Hollow Magnesium Fluoride Particles. ACS Applied Materials & Interfaces, 6, 4418-4427.
https://doi.org/10.1021/am500139m
[13]  Pietrowski, M. and Wojciechowska, M. (2007) Microwave-Assisted Synthesis of Spherical Monodispersed Magnesium Fluoride. Journal of Fluorine Chemistry, 128, 219-223.
https://doi.org/10.1016/j.jfluchem.2006.12.009
[14]  Karthik, D., Pendse, S., Sakthivel, S., Ramasamy, E. and Joshi, S.V. (2017) High Performance Broad Band Antireflective Coatings Using a Facile Synthesis of Ink-Bottle Mesoporous MgF2 Nanoparticles for Solar Applications. Solar Energy Materials & Solar Cells, 2017, 159, 204-211.
https://doi.org/10.1016/j.solmat.2016.08.007
[15]  Hou, S., Zou, Y., Liu, X., Yu, X., Liu, B., Sun, X. and Xing, Y. (2011) CaF2 and CaF2:Ln3+ (Ln = Er, Nd, Yb) Hierarchical Nanoflowers: Hydrothermal Synthesis and Luminescent Properties. CrystEngComm, 13, 835-840.
https://doi.org/10.1039/C0CE00396D
[16]  Yang, N., Zhang, L., Yan, C., Wang, X., Wang, N., Chen, D.L., Wang, S. and Zhu, W. (2020) Preparation of CaF2 Microspheres with Nanopetals for Water Vapor Adsorption. Langmuir, 36, 5369-5376.
https://doi.org/10.1021/acs.langmuir.0c00763
[17]  Wang, Y., Zeng, D., Dai, Y., Fang, C., Han, X., Zhang, Z., Cao, X. and Liu, Y. (2020) The Adsorptive Ability of 3D Flower-Like Titanium Phosphate for U(VI) in Aqueous Solution. Water, Air, & Soil Pollution, 231, Article No. 464.
https://doi.org/10.1007/s11270-020-04817-2
[18]  Kemnitz, E. (2015) Nanoscale Metal Fluorides: A New Class of Heterogeneous Catalysts. Catalysis Science & Technology, 5, 786-806.
https://doi.org/10.1039/C4CY01397B
[19]  Zhang, L., Han, P., Zhang, C., Dong, M., Yang, Y. and Gu, X. (2011) Density Functional Theory Study on the Stability and Electronic Properties of MgF2 Surfaces. Acta Physico-Chimica Sinica, 27, 1609-1614.
[20]  Xu, H. and Lv, J. (2002) Synthesis of Difluoromethane over Magnesium Fluoride (MgF2) Based Catalyst. Industrial Catalysis, 5, 10.
[21]  Nakamura, F., Kato, T., Okada, G., Kawano, N., Kawaguchi, N., Fukuda, K. and Yanagida, T. (2018) Scintillation, Dosimeter and Optical Properties of MgF2 Transparent Ceramics Doped with Gd3+. Materials Research Bulletin, 98, 83-88.
https://doi.org/10.1016/j.materresbull.2017.09.058
[22]  Chen, F., Yuan, L. and Johnston, R.L. (2012) Low-Loss Optical Magnetic Metamaterials on Ag-Au Bimetallic Fishnets. Journal of Magnetism and Magnetic Materials, 324, 2625-2630.
https://doi.org/10.1016/j.jmmm.2012.03.025
[23]  Agirrezabal-Telleria, I., Guo, Y., Hemmann, F., Arias, P.L. and Kemnitz, E. (2014) Dehydration of Xylose and Glucose to Furan Derivatives Using Bifunctional Partially Hydroxylated MgF2 Catalysts and N2-Stripping. Catalysis Science & Technology, 4, 1357-1368.
https://doi.org/10.1039/C4CY00129J
[24]  Ji, Z., Hao, L., Wang, H. and Chen, R. (2019) Analysis and Research on the Formative Factors and Properties of Nano-MgF2 Crystals with Different Morphologies. Polyhedron, 157, 136-145.
https://doi.org/10.1016/j.poly.2018.09.061
[25]  Sevonkaev, I. and Matijevic, E. (2009) Formation of Magnesium Fluoride Particles of Different Morphologies. Langmuir, 25, 10534-10539.
https://doi.org/10.1021/la901307t
[26]  Nandiyanto, A.B., Iskandar, F., Ogi, T. and Okuyama, K. (2010) Nanometer to Submicrometer Magnesium Fluoride Particles with Controllable Morphology. Langmuir, 26, 12260-12266.
https://doi.org/10.1021/la101194w
[27]  Krishna Murthy, J., Gro?, U., Rüdiger, S., Kemnitz, E. and Winfield, J.M. (20060 Sol-Gel-Fluorination Synthesis of Amorphous Magnesium Fluoride. Journal of Solid State Chemistry, 179, 739-746.
https://doi.org/10.1016/j.jssc.2005.11.033
[28]  Xu, Z., Kang, X., Li, C., Hou, Z., Zhang, C., Yang, D., Li, G. and Lin, J. (2010) Ln(3+) (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) Nano/Microcrystals with Multiform Morphologies: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties. Inorganic Chemistry, 49, 6706-6715.
https://doi.org/10.1021/ic100953m.
[29]  Ji, Z., Bao, L., Wang, H. and Chen, R. (2017) Preparation of Super-Hydrophobic Antireflective Films by Rod-Like MgF2 and SiO2 Mixed Sol. Materials Letters, 207, 21-24.
https://doi.org/10.1016/j.matlet.2017.07.050
[30]  Nandiyanto, A.B., Ogi, T. and Okuyama, K. (2014) Control of the Shell Structural Properties and Cavity Diameter of Hollow Magnesium Fluoride Particles. ACS Applied Materials & Interfaces, 6, 4418-4427.
https://doi.org/10.1021/am500139m
[31]  Pietrowski, M. and Wojciechowska, M. (2007) Microwave-Assisted Synthesis of Spherical Monodispersed Magnesium Fluoride. Journal of Fluorine Chemistry, 128, 219-223.
https://doi.org/10.1016/j.jfluchem.2006.12.009
[32]  Karthik, D., Pendse, S., Sakthivel, S., Ramasamy, E. and Joshi, S.V. (2017) High Performance Broad Band Antireflective Coatings Using a Facile Synthesis of Ink-Bottle Mesoporous MgF2 Nanoparticles for Solar Applications. Solar Energy Materials & Solar Cells, 2017, 159, 204-211.
https://doi.org/10.1016/j.solmat.2016.08.007
[33]  Hou, S., Zou, Y., Liu, X., Yu, X., Liu, B., Sun, X. and Xing, Y. (2011) CaF2 and CaF2:Ln3+ (Ln = Er, Nd, Yb) Hierarchical Nanoflowers: Hydrothermal Synthesis and Luminescent Properties. CrystEngComm, 13, 835-840.
https://doi.org/10.1039/C0CE00396D
[34]  Yang, N., Zhang, L., Yan, C., Wang, X., Wang, N., Chen, D.L., Wang, S. and Zhu, W. (2020) Preparation of CaF2 Microspheres with Nanopetals for Water Vapor Adsorption. Langmuir, 36, 5369-5376.
https://doi.org/10.1021/acs.langmuir.0c00763
[35]  Wang, Y., Zeng, D., Dai, Y., Fang, C., Han, X., Zhang, Z., Cao, X. and Liu, Y. (2020) The Adsorptive Ability of 3D Flower-Like Titanium Phosphate for U(VI) in Aqueous Solution. Water, Air, & Soil Pollution, 231, Article No. 464.
https://doi.org/10.1007/s11270-020-04817-2
[36]  Kemnitz, E. (2015) Nanoscale Metal Fluorides: A New Class of Heterogeneous Catalysts. Catalysis Science & Technology, 5, 786-806.
https://doi.org/10.1039/C4CY01397B

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133