|
Optoelectronics 2021
半导体光放大器研究进展
|
Abstract:
在光纤通信系统中,随着传输速率的增加,传统的O/E/O中继方式已经不能满足我们的需求,而半导体光放大器可以直接进行光/光的转换。半导体光放大器主要是一种由半导体材料制造的光放大器,半导体光放大器的快速发展主要得益于量子阱材料半导体光放大器的研制成功,克服了偏振敏感的缺点。而量子点材料的研发和使用可提高半导体光放大器的传输效率和波形稳定性,并且使噪声和串扰性能更加优化。本题主要是以半导体激光器为基础,介绍了半导体光放大器的原理和结构、发展历程,以及半导体光放大器的基本功能和应用。另外还探讨了半导体光放大器的最新国内外进展。半导体光放大器能直接放大光信号,对信号的格式和速率具有高度的透明性,使得整个系统更加简单灵活,它的出现和实用化在光纤通信发展史上具有里程碑意义。
In optical fiber communication systems, as the transmission rate increases, the traditional O/E/O relay method can no longer meet our needs, and the semiconductor optical amplifier can directly perform optical/optical conversion. Semiconductor optical amplifiers are mainly optical amplifiers made of semiconductor materials. The rapid development of semiconductor optical amplifiers mainly benefits from the successful development of quantum well materials semiconductor optical amplifiers, which overcomes the disadvantage of polarization sensitivity. The development and use of quantum dot materials can improve the transmission efficiency and waveform stability of semiconductor optical amplifiers, and optimize the performance of noise and crosstalk. This topic is mainly based on semiconductor lasers. It introduces the principle and structure of semiconductor optical amplifier, the development process, and the basic functions and applications of semiconductor optical amplifiers. In addition, the latest domestic and foreign developments of semiconductor optical amplifiers are also discussed. The semiconductor optical amplifier can directly amplify the optical signal, and has a high degree of transparency to the signal format and rate, making the entire system simple and flexible. Its appearance and practicality is a milestone in the history of optical fiber communication.
[1] | 邓灿冉, 朱益清, 徐贵勇, 张士勋, 杨国锋, 李璟文, 胡立发, 楚广勇. 反射型半导体光放大器建模与模拟[J]. 应用激光, 2020, 40(3): 532-538. |
[2] | 江涛, 陈艳. 半导体光放大器[J]. 激光与光电子学进展, 2000(8): 40-45. |
[3] | 杨祥林. 光放大器及其应用[M]. 北京: 电子工业出版社, 2000: 20-26. |
[4] | 冯先成, 段文潇, 李寒. 增益半导体光放大器的特性[J]. 强激光与粒子束, 2012(6): 81-82. |
[5] | 龙柏. 半导体光放大器及其应用[J]. 世界产品与技术, 2002(7). 38-40. |
[6] | 陈旭, 胡哲纲, 许胜祥, 阳奇. 集成双波导量子阱结构半导体光放大器的增益特性研究[J]. 电子世界, 2020(9): 27-28. |
[7] | 崔迎超, 张书练, 冯金垣. 半导体光放大器的增益特性和偏振特性[J]. 激光技术, 2005(5): 462-465+483. |
[8] | 魏澎, 李勇超. 光放大器的原理及应用分析[J]. 邮电设计技术, 2003(4): 15-21. |
[9] | 努尔买买提, 徐天翔, 陈立功, 张尚剑, 刘永. 基于半导体光放大器的全光信号处理研究进展[J]. 激光杂志, 2012, 33(3): 1-4. |
[10] | 孙志峰, 王会洪, 李雪宁, 张敏明, 唐志红, 李晓磊, 刘弘扬, 皮逸翔. 基于SOA的全光波长转换系统的研究[J]. 光通信技术, 2015, 39(12): 19-21. |
[11] | 杨慧敏. 半导体光放大器的应用[J]. 科技视界, 2012(19): 12+21. |
[12] | 李保海, 吴重庆, 付松年, 张勇. 半导体光放大器的研究进展与新应用[J]. 光通信技术, 2004(4): 18-21. |
[13] | 战高峰. 半导体光放大器在光纤通信中的应用[J]. 黑龙江科学, 2014, 5(7): 256. |
[14] | Anderson, N.G., Laidig, W.D., Lee, G., Lo, Y. and Ozturk, M. (1984) Luminescence Properties of InxGa1?xAs-GaAs Strained-Layer Superlattices. MRS Proceedings, 37, Online.
https://www.cambridge.org/core/journals/mrs-online-proceedings-library-archive/article/abs/luminescence-properties-of-inxga1xasgaas-strainedlayer-superlattices/597F9563621ABC1ACA3309327FF61970 |
[15] | 刘志勇. 基于半导体光放大器的光纤激光器研究[D]: [硕士学位论文]. 荆州: 长江大学, 2019: 1-2. |
[16] | 余建兴. 基于量子点半导体光放大器交叉增益调制效应的全光逻辑门研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2011: 8-16. |
[17] | 刘长深. 单端量子点半导体光放大器的动态特性研究[D]: [硕士学位论文]. 济宁: 曲阜师范大学, 2015: 36-40. |
[18] | 密术超. 基于量子点SOA级联XGM与XPM波长转换的研究[D]: [硕士学位论文]. 济宁: 曲阜师范大学, 2020: 54-70. |
[19] | Izadyar, S.M., Razaghi, M. and Hassanzadeh, A. (2020) Quantum Dot Semiconductor Optical Amplifier: Investigation of Ultra. Journal of Physics D: Applied Physics, 53, 23-27. https://doi.org/10.1088/1361-6463/ab8c7b |
[20] | 施伟伟, 张汉一, 吴克瑛, 等. 基于半导体光放大器的波长转换新方案研究[J]. 光通信技术, 2004, 28(8): 43-45. |
[21] | Rizou, Z.V., Zoiros, K.E., Rampone, T. and Sharaiha, A. (2020) Reflective Semiconductor Optical Amplifier Direct Modulation Capability Enhancement Using Birefringent Fiber Loop. Applied Sciences, 10, 324-543.
https://doi.org/10.3390/app10155328 |
[22] | Safari-Anzabi, K., Habibzadeh-Sharif, A., Connelly, M.J. and Rostami, A. (2021) Performance Enhancement of an All-Optical XOR Gate Using Quantum-Dot Based Reflective Semiconductor Optical Amplifiers in a Folded Mach-Zehnder Interferometer. Optics and Laser Technology, 135, 400-451.
https://doi.org/10.1016/j.optlastec.2020.106628 |
[23] | Matsumoto, M. and Morioka, Y. (2009) Fiber-Based All-Optical Regeneration of DPSK Signals Degraded by Transmission in a Fiber. Optics Express, 17, 6913-6919. https://doi.org/10.1364/OE.17.006913 |
[24] | Dong, J.J., Zhang, X.L., Fu, S.N., Xu, J., Bu, P.S. and Huang, D.X. (2008) UItrafast All-Optical Signal Processing Based on Single Semi-Conductor Optical Amplifier and Optical Filtering. Journal of Selected Topics in Quantum Electronics, 14, 630-676. https://doi.org/10.1109/JSTQE.2008.916248 |
[25] | Nuzman, C., Leuthold, J., Ryf, R., Chandrasekhar, S., Giles, C. and Neilson, D. (2003) Design and Implementation of Wave Length-Flexible Network Nodes. Journal of Light Wave Technology, 21, 648-663.
https://doi.org/10.1109/JLT.2003.809687 |
[26] | Nielsen, M.L., Mork, J., Suzuki, R., Sakaguchi, J. and Ueno, Y. (2006) Experimental and Theoretical Investigation of the Impact of Ultra-Fast Carrier Dynamics on High-Speed SOA Based All Opticals Witches. Optics Express, 14, 331-347. https://doi.org/10.1364/OPEX.14.000331 |
[27] | Von Lerber, T., Honkanen, S., Tervonen, A., Ludvigsen, H. and Kǜppers, F. (2009) Optical Clock Recovery Methods: Review. Optical Fiber Technology, 15, 363-373. https://doi.org/10.1016/j.yofte.2009.03.006 |
[28] | Stubkjaer, K.E. (2000) Semiconductor Optical Amplifier Based All-Optical Gates for High-Speed Optical Processing. Journal of Selected Topics in Quantu Electronics, 6, 1428-1435. https://doi.org/10.1109/2944.902198 |
[29] | 李鑫. 基于半导体光放大器的全光相位调制的研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2019: 23. |