全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

最优控制法对斜拉桥索力的控制机制
Optimal Control Method for the Control Mechanism of Cable Force for Cable-Stayed Bridge

DOI: 10.12677/HJCE.2021.103019, PP. 167-176

Keywords: 振动频率法,油压回归法,等效数学法,最优控制,斜拉索索力
Vibration Frequency Method
, Oil Pressure Regression Method, Equivalent Mathematical Method, Optimum Control, Stay Cable Tension

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于外海海域工程环境的特殊性,对于施工过程中斜拉索索力的控制需要考虑风力、湿度、日照以及温度等多种因素影响,如何确定合理的索力施工控制机制成为斜拉桥施工过程中最主要的问题之一,影响到后续斜拉索挂索施工甚至后期梁段合拢,因此需要通过综合多种控制方法控制实际施工索力来满足控制需求。最优控制法通过多方数据比对,综合运用振动频率法建立现场实测频率与索力值的换算方程、计算千斤顶油压与索力的回归关系以及建立拉索端引伸量与索力的等效数学关系,从而对索力进行复核和控制。当施工阶段出现误差,需要调整索力时,调整量通过最优控制法计算确定,从而实现对施工过程中索力的精细化控制。
Due to the particularity of the engineering environment in the open sea, the control of the cable force during the construction process needs to consider the influence of wind, humidity, sunshine, temperature and other factors. How to determine a reasonable cable force construction control mechanism becomes one of the most important problems during the cable-stayed bridge construction process, which affects the subsequent cable-stayed construction and even the later closing of the beam section. Therefore, it is necessary to control the actual construction cable force through a comprehensive variety of control methods to meet the control requirements. The optimal control method uses the vibration frequency method to check and control the cable force, such as to establish the conversion equation between the measured frequency and the cable force value, calculates the regression relationship between the jack oil pressure and the cable force, and establishes the equivalent mathematical relationship of the cable end extension and the cable force. When there is an error in the construction stage and the cable force needs to be adjusted, the adjustment amount is calculated and determined by the optimal control method, so as to realize the fine control of the cable force during the construction process.

References

[1]  严国敏. 现代斜拉桥[M]. 成都: 西南交通大学出版社, 1989.
[2]  林元培. 斜拉桥[M]. 北京: 人民交通出版社, 1994.
[3]  Gimsing, S.J. (1997) Cable Supported Bridge. John Wiley, Chichester, 2-8.
[4]  Podolmy, W. and Scalzi, J.B. (1976) Construction and Design of Cable-Stayed Bridge. John Wiley, New York.
[5]  黄灿. 基于几何控制法的大跨度斜拉桥自适应施工控制体系研究[D]: [博士学位论文]. 成都: 西南交通大学, 2011.
[6]  颜东煌, 刘光栋. 确定斜拉桥合理施工状态的正装迭代法[J]. 中国公路学报, 1999, 12(2): 61-66.
[7]  秦顺全. 分阶段施工桥梁的无应力状态控制法[J]. 桥梁建设, 2008(1): 8-14.
[8]  向中富, 徐君兰, 代正宏. 悬索桥施工控制分析的恒定无应力索长迭代法[J]. 重庆交通学院学报, 2000(3): 16-21.
[9]  王晟, 宁平华, 颜东煌, 等. 基于索长迭代法的斜拉桥合理施工阶段索力研究[J]. 公路工程, 2019, 44(3): 6-10, 32.
[10]  王晟, 颜东煌, 宁平华, 等. 确定钢桁梁斜拉桥合理施工阶段索力的索长迭代法[J]. 中外公路, 2019, 39(3): 78-82.
[11]  李乔, 卜一之, 张清华. 基于几何控制的全过程自适应施工控制系统研究[J]. 土木工程学报, 2009, 42(7): 69-77.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133