全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Isolation and Ex Vivo Expansion of Human Hematopoietic Stem Cells Derived from Umbilical Cord Blood

DOI: 10.4236/scd.2021.111001, PP. 1-13

Keywords: Hematopoietic Stem Cells, Isolation, Ex Vivo Expansion

Full-Text   Cite this paper   Add to My Lib

Abstract:

Umbilical cord blood (UCB) is a current major source of hematopoietic stem cells (HSCs) for cell transplantation therapy. Cell transplantation with HSCs derived from UCB is advantageous over transplantation with HSCs from adult tissues. However, the low number of HSC derived from a single unit of UCB limits its application. Thus, ex vivo expansion is a good option to create more UCB HSCs for clinical application. The strategies for HSC expansion in vitro focus on mimicking the composition and structure of HSC natural niche by enhancing self-renewal and inhibiting lineage differentiation of HSCs. In the past decade, the mechanisms of the interaction between HSC and the natural niche have been deeply investigated. This great progress in basic research has led to advancements in UCB HSC ex vivo expansion. In addition, the biological characteristics of the originally isolated UCB HSCs correlate with outcome of subsequent ex vivo expansion. In this paper, we summarize the late progress achieved in isolation and ex vivo expansion of UCB HSCs. Importantly, we attempt to provide an impact and practicable procedure to expand UCB HSC in vitro from isolation of original HSCs to identification of expanded HSCs.

References

[1]  Mantel, C.R., O’Leary, H.A., Chitteti, B.R., et al. (2015) Enhancing Hematopoietic Stem Cell Transplantation Efficacy by Mitigating Oxygen Shock. Cell, 161, 1553-1565.
https://doi.org/10.1016/j.cell.2015.04.054
[2]  Andrade, P.Z., Dos, S.F., Cabral, J.M., et al. (2015) Stem Cell Bioengineering Strategies to Widen the Therapeutic Applications of Haematopoietic Stem/Progenitor Cells from Umbilical Cord Blood. Journal of Tissue Engineering and Regenerative Medicine, 9, 988-1003.
https://doi.org/10.1002/term.1741
[3]  Wang, W., Fujii, H., Kim, H.J., et al. (2017) Enhanced Human Hematopoietic Stem and Progenitor Cell Engraftment by Blocking Donor T Cell-Mediated TNFα Signaling. Science Translational Medicine, 9, g3214.
https://doi.org/10.1126/scitranslmed.aag3214
[4]  Saudemont, A. and Madrigal, J.A. (2017) Immunotherapy after Hematopoietic Stem Cell Transplantation Using Umbilical Cord Blood-Derived Products. Cancer Immunology, Immunotherapy, 66, 215-221.
https://doi.org/10.1007/s00262-016-1852-3
[5]  Ballen, K.K., Gluckman, E. and Broxmeyer, H.E. (2013) Umbilical Cord Blood Transplantation: The First 25 Years and Beyond. Blood, 122, 491-498.
https://doi.org/10.1182/blood-2013-02-453175
[6]  Gupta, R., Turati, V., Brian, D, et al. (2020) Nov/CCN3 Enhances Cord Blood Engraftment by Rapidly Recruiting Latent Human Stem Cell Activity. Cell Stem Cell, 26, 527-541.
https://doi.org/10.1016/j.stem.2020.02.012
[7]  Kaur, K., Mirlashari, M.R., Kvalheim, G., et al. (2013) 3,4’-Dimethoxyflavone and Valproic Acid Promotes the Proliferation of Human Hematopoietic Stem Cells. Stem Cell Research & Therapy, 4, 60.
https://doi.org/10.1186/scrt208
[8]  Delaney, C., Heimfeld, S., Brashem-Stein, C., et al. (2010) Notch-Mediated Expansion of Human Cord Blood Progenitor Cells Capable of Rapid Myeloid Reconstitution. Nature Medicine, 16, 232-236.
https://doi.org/10.1038/nm.2080
[9]  M-Reboredo, N., Díaz, A., Castro, A., et al. (2000) Collection, Processing and Cryopreservation of Umbilical Cord Blood for Unrelated Transplantation. Bone Marrow Transplant, 26, 1263-1270.
https://doi.org/10.1038/sj.bmt.1702728
[10]  Faivre, L., Couzin, C, Boucher, H., et al. (2018) Associated Factors of Umbilical Cord Blood Collection Quality. Transfusion, 58, 520-531.
https://doi.org/10.1111/trf.14447
[11]  Ito, K. and Suda, T. (2014) Metabolic Requirements for the Maintenance of Self- Renewing Stem Cells. Nature Reviews Molecular Cell Biology, 15, 243-256.
https://doi.org/10.1038/nrm3772
[12]  Viny, A.D., Bowman, R.L., Liu, Y., et al. (2019) Cohesin Members Stag1 and Stag 2 Display Distinct Roles in Chromatin Accessibility and Topological Control of HSC Self-Renewal and Differentiation. Cell Stem Cell, 25, 682-696.
https://doi.org/10.1016/j.stem.2019.08.003
[13]  Calvi, L.M., Adams, G.B., Weibrecht, K.W., et al. (2003) Osteoblastic Cells Regulate the Haematopoietic Stem Cell Niche. Nature, 425, 841-846.
https://doi.org/10.1038/nature02040
[14]  Morrison, S.J. and Scadden, D.T. (2014) The Bone Marrow Niche for Haematopoietic Stem Cells. Nature, 505, 327-334.
https://doi.org/10.1038/nature12984
[15]  Mendelson, A. and Frenette, P.S. (2014) Hematopoietic Stem Cell Niche Maintenance during Homeostasis and Regeneration. Nature Medicine, 20, 833-846.
https://doi.org/10.1038/nm.3647
[16]  Ema, H., Takano, H., Sudo, K., et al. (2000) In Vitro Self-Renewal Division of Hematopoietic Stem Cells. Journal of Experimental Medicine, 192, 1281-1288.
https://doi.org/10.1084/jem.192.9.1281
[17]  Yamazaki, S., Ema, H., Karlsson, G., et al. (2011) Nonmyelinating Schwann Cells Maintain Hematopoietic Stem Cell Hibernation in the Bone Marrow Niche. Cell, 147, 1146-1158.
https://doi.org/10.1016/j.cell.2011.09.053
[18]  Rossmanith, T., Schröder, B., Bug, G., et al. (2001) Interleukin 3 Improves the ex Vivo Expansion of Primitive Human Cord Blood Progenitor Cells and Maintains the Engraftment Potential of Scid Repopulating Cells. Stem Cells, 19, 313-320.
https://doi.org/10.1634/stemcells.19-4-313
[19]  Boitano, A.E., Wang, J., Romeo, R., et al. (2010) Aryl Hydrocarbon Receptor Antagonists Promote the Expansion of Human Hematopoietic Stem Cells. Science, 329, 1345-1348.
https://doi.org/10.1126/science.1191536
[20]  Fares, I., Chagraoui, J., Gareau, Y., et al. (2014) Cord Blood Expansion. Pyrimidoindole Derivatives Are Agonists of Human Hematopoietic STEM Cell Self-Renewal. Science, 345, 1509-1512.
https://doi.org/10.1126/science.1256337
[21]  Wagner, J.J., Brunstein, C.G., Boitano, A.E., et al. (2016) Phase I/II Trial of StemRegenin-1 Expanded Umbilical Cord Blood Hematopoietic Stem Cells Supports Testing as a Stand-Alone Graft. CELL STEM CELL, 18, 144-155.
https://doi.org/10.1016/j.stem.2015.10.004
[22]  Cohen, S., Roy, J., Lachance, S., et al. (2020) Hematopoietic Stem Cell Transplantation Using Single UM171-Expanded Cord Blood: A Single-Arm, Phase 1-2 Safety and Feasibility Study. The Lancet Haematology, 7, e134-e145.
https://doi.org/10.1016/S2352-3026(19)30202-9
[23]  Haran, M. and Gross, A. (2014) Balancing Glycolysis and Mitochondrial OXPHOS: Lessons from the Hematopoietic System and Exercising Muscles. Mitochondrion, 19, 3-7.
https://doi.org/10.1016/j.mito.2014.09.007
[24]  Luchsinger, L.L., Strikoudis, A., Danzl, N.M., et al. (2019) Harnessing Hematopoietic Stem Cell Low Intracellular Calcium Improves Their Maintenance in Vitro. Cell Stem Cell, 25, 225-240.
https://doi.org/10.1016/j.stem.2019.05.002
[25]  Montgomery, D.C. (2017) Design and Analysis of Experiments. 9th Edition, Wiley, Hoboken.
[26]  Ahmad, F., Ashraf, N., Zhou, R.B., et al. (2019) Optimization for Silver Remediation from Aqueous Solution by Novel Bacterial Isolates Using Response Surface Methodology: Recovery and Characterization of Biogenic AgNPs. Journal of Hazardous Materials, 380, Article ID: 120906.
https://doi.org/10.1016/j.jhazmat.2019.120906
[27]  Abdous, B., Sajjadi, S.M. and Mani, L.M. (2017) β-Cyclodextrin Modified Mesoporous Silica Nanoparticles as a Nano-Carrier: Response Surface Methodology to Investigate and Optimize Loading and Release Processes for Curcumin Delivery. Journal of Applied Biomedicine, 15, 210-218.
https://doi.org/10.1016/j.jab.2017.02.004
[28]  Ahmad, I., Yanuar, A., Mulia, K., et al. (2017) Optimization of Ionic Liquid-Based Microwave-Assisted Extraction of Polyphenolic Content from Peperomia pellucida (L) Kunth Using Response Surface Methodology. Asian Pacific Journal of Tropical Biomedicine, 7, 660-665.
https://doi.org/10.1016/j.apjtb.2017.06.010
[29]  Uddin, M.G., Allardyce, B.J., Leal, D., et al. (2020) Exfoliating B. mori Silk into High Aspect Ratio Nanofibrils Facilitated by Response Surface Methodology. International Journal of Biological Macromolecules, 164, 2389-2398.
https://doi.org/10.1016/j.ijbiomac.2020.08.106
[30]  Bezerra, M.A., Santelli, R.E., Oliveira, E.P., et al. (2008) Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta, 76, 965-977.
https://doi.org/10.1016/j.talanta.2008.05.019
[31]  Rishad, K.S., Rebello, S., Nathan, V.K., et al. (2016) Optimised Production of Chitinase from a Novel Mangrove Isolate, Bacillus pumilus MCB-7 Using Response Surface Methodology. Biocatalysis and Agricultural Biotechnology, 5, 143-149.
https://doi.org/10.1016/j.bcab.2016.01.009
[32]  Shahbazi, N. and Zare-Dorabei, R. (2019) A Novel “Off-On” Fluorescence Nanosensor for Sensitive Determination of Sulfide Ions Based on Carbon Quantum Dots and Gold Nanoparticles: Central Composite Design Optimization. Microchemical Journal, 145, 996-1002.
https://doi.org/10.1016/j.microc.2018.12.022
[33]  Chagraoui, J., Lehnertz, B., Girard, S., et al. (2019) UM171 Induces a Homeostatic Inflammatory-Detoxification Response Supporting Human HSC Self-Renewal. PLoS ONE, 14, e224900.
https://doi.org/10.2139/ssrn.3381950
[34]  Wilkinson, A.C., Ishida, R., Kikuchi, M., et al. (2019) Long-Term ex Vivo Haematopoietic-Stem-Cell Expansion Allows Nonconditioned Transplantation. Nature, 571, 117-121.
https://doi.org/10.1038/s41586-019-1244-x
[35]  Csaszar, E., Kirouac, D.C., Yu, M., et al. (2012) Rapid Expansion of Human Hematopoietic Stem Cells by Automated Control of Inhibitory Feedback Signaling. Cell Stem Cell, 10, 218-229.
https://doi.org/10.1016/j.stem.2012.01.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133