All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

功能材料表面修饰用于循环肿瘤细胞的捕获
Functional Materials Surface Modified for the Capture of Circulating Tumor Cells

DOI: 10.12677/NAT.2021.111001, PP. 1-7

Keywords: 微流控芯片,循环肿瘤细胞,抗体修饰,静电纺丝,捕获
Micro-Fluidic Chip
, Circulating Tumor Cells, Antibody Modification, Electr-Ostatic Spinning, Capture

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究以循环肿瘤细胞(MCF-7)为研究对象,利用软光刻技术制备了微米尺寸的微柱,利用静电纺丝技术在含有微柱结构的基底上面纺上PLGA纳米纤维,形成一种微米和纳米复合尺寸的生物界面,在纳米纤维上修饰特异性抗体,实现肿瘤细胞(MCF-7)的捕获。这种研究方法结合了微流控技术和静电纺丝技术,制备出一种三维微柱网络支架结构,增大了细胞的捕获空间,再通过对微结构上的纳米纤维进行改性,提高了循环肿瘤细胞检测的灵敏度,这种研究方法大大提高了循环肿瘤细胞检测的效率,为临床癌症检测提供了新的研究方向。
In this study, circulating tumor cells (McF-7) were used as the research object. Microcolumns of micron size were prepared by soft photolithography. Using electrostatic spinning technology, PLGA nanofibers were spun on the microcolumnar substrates, then a micron-nanocomposite biological interface was prepared. Specific antibodies were modified on nanofibers, circulating tumor cells can be captured at this time. This research method combines microfluidic technology and electrostatic spinning technology. The three-dimensional microcolumn network scaffold structure is prepared to increase the capture space of cells, and the sensitivity of detection of circulating tumor cells was improved by modifying the nanofibers on the microstructure. This method greatly improves the detection efficiency of circulating tumor cells, and also provides a new research direction for clinical cancer detection.

References

[1]  Zhao, Y., Xu, D. and Tan, W. (2017) Aptamer-Functionalized Nano/Micro-Materials for Clinical Diagnosis: Isolation, Release and Bioanalysis of Circulating Tumor Cells. Integrative Biology, 9, 188-205.
https://doi.org/10.1039/c6ib00239k
[2]  Hyun, K.-A., Lee, T.Y., Lee, S.H. and Jung, H.-I. (2015) Two-Stage Mi-crofluidic Chip for Selective Isolation of Circulating Tumor Cells (CTCs). Biosensors and Bioelectronics, 67, 86-92.
https://doi.org/10.1016/j.bios.2014.07.019
[3]  Fitzgerald, R.C. (2020) Big Data Is Crucial to the Early Detection of Cancer. Nature Medicine, 26, 19-20.
https://doi.org/10.1038/s41591-019-0725-7
[4]  Yang, C.G., Zhang, N.G., Wang, S.Y., Shi, D.D., Zhang, C.X., Liu, K., et al. (2018) Wedge-Shaped Microfluidic Chip for Circulating Tumor Cells Isolation and Its Clinical Significance in Gastric Cancer. Journal of Translational Medicine, 16, Article No. 139.
https://doi.org/10.1186/s12967-018-1521-8
[5]  Tulley, S., Zhao, Q., Dong, H., Pearl, M.L. and Chen, W.-T. (2016) Vita-AssayTM Method of Enrichment and Identification of Circulating Cancer Cells/Circulating Tumor Cells (CTCs). In: Cao, J., Ed., Breast Cancer, Humana Press, New York, 107-119.
https://doi.org/10.1007/978-1-4939-3444-7_9
[6]  Zhang, L., Li, X.S. and Zhou, L.Q. (2016) Renal Tumor Biop-sy Technique. Chinese Medical Journal, 129, 1236-1240.
https://doi.org/10.4103/0366-6999.181957
[7]  Zhou, Y., Liu, C.H., Li, J., Li, Z.W., Zhou, L.X., Chen, K., et al. (2014) Tumor Margin Detection Using Optical Biopsy Techniques. Optical Biopsy 12th International Society for Optics and Photonics, San Francisco, 17 March 2014, Article ID: 894014.
https://doi.org/10.1117/12.2038723
[8]  Schulte, T.H., Bardell, R.L. and Weigl, B.H. (2002) Microfluidic Tech-nologies in Clinical Diagnostics. Clinica Chimica Acta, 321, 1-10.
https://doi.org/10.1016/S0009-8981(02)00093-1
[9]  Squires, T.M. and Quake, S.R. (2005) Micro-Fluidics: Fluid Physics at the Nanoliter Scale. Reviews of Modern Physics, 77, 977-1026.
https://doi.org/10.1103/RevModPhys.77.977
[10]  Kalish, H. (2011) Application of Micro-Fluidic Devices for Biomarker Analysis in Human Biological Fluids. In: Olsztynska, S., Ed., Biomedical Engineering: Trends, Research and Technologies, IntechOpen, London, 121-140.
https://doi.org/10.5772/12913
[11]  Marimuthu, M. and Kim, S. (2011) Microfluidic Cell Coculture Methods for Understanding Cell Biology, Analyzing Bio/Pharmaceuticals, and Developing Tissue Constructs. Analytical Biochemis-try, 413, 81-89.
https://doi.org/10.1016/j.ab.2011.02.027
[12]  Hynes, R.O., Begum, S. and Labelle, M. (2013) Platelets, Tumor Cell Invasiveness, and Metastasis. Blood, 122, SCI-31.
https://doi.org/10.1182/blood.V122.21.SCI-31.SCI-31
[13]  Rodríguez-San-Miguel, D., Abrishamkar, A., Navarro, J.A.R., Rodriguez-Trujillo, R., Amabilino, D.B., Mas-Ballesté, R., et al. (2016) Crystalline Fibres of a Covalent Organic Framework through Bottom-up Microfluidic Synthesis. Chemical Communications, 52, 9212-9215.
https://doi.org/10.1039/C6CC04013F
[14]  Zhao, Z., Yang, Y., Zeng, Y. and He, M. (2016) A microfluidic Ex-oSearch Chip for Multiplexed Exosome Detection towards Blood-Based Ovarian Cancer Diagnosis. Lab on a Chip, 16, 489-496.
https://doi.org/10.1039/C5LC01117E
[15]  Zhang, H., Yang, Y., Li, X., Shi, Y.Z., Hu, B., An, Y., et al. (2018) Frequency-Enhanced Transferrin Receptor Antibody-Labelled Microfluidic Chip (FETAL-Chip) Enables Efficient Enrichment of Circulating Nucleated Red Blood Cells for Non-Invasive Prenatal Diagnosis. Lab on a Chip, 18, 2749-2756.
https://doi.org/10.1039/C8LC00650D
[16]  Zhao, W., Liu, Y., Jenkins, B.D., Cheng, R., Harris, B.N., Zhang, W.Z., et al. (2019) Tumor Antigen-Independent and Cell Size Variation-Inclusive Enrichment of Viable Circulat-ing Tumor Cells. Lab on a Chip, 19, 1860-1876.
https://doi.org/10.1039/C9LC00210C
[17]  Bein, A., Shin, W., Jalili-Firoozinezhad, S., Park, M.H., Son-theimer-Phelps, A., Tovaglieri, A., et al. (2018) Microfluidic Organ-on-a-Chip Models of Human Intestine. Cellular and Molecular Gastroenterology and Hepatology, 5, 659-668.
https://doi.org/10.1016/j.jcmgh.2017.12.010
[18]  Sequist, L.V., Louis, D.N., Morgan, B.P., Emmink, B.L., Miyamoto, D.T., Brachtel, E., et al. (2013) Inertial Focusing for Tumor Antigen-Dependent and -Independent Sorting of Rare Circulating Tumor Cells. Science Translational Medicine, 5, 179ra47.
https://doi.org/10.1126/scitranslmed.3005616
[19]  Sheng, W., Ogunwobi, O.O., Chen, T., Zhang, J.L., George, T.J., Liu, C., et al. (2014) Capture, Release and Culture of Circulating Tumor Cells from Pancreatic Cancer Patients Us-ing an Enhanced Mixing Chip. Lab on a chip, 14, 89-98.
https://doi.org/10.1039/C3LC51017D
[20]  Han, X., Liu, Z. and Zhao, L. (2020) Preparation of Optically Func-tional Nanofibres and Their Optical Properties under Electrospinning Technology. International Journal of Nanotech-nology, 17, Article No. 308.
https://doi.org/10.1504/IJNT.2020.110721
[21]  李娜. 微纳结构与纳米材料在肿瘤检测及心肌分化中的应用研究[D]: [硕士学位论文]. 武汉: 江汉大学, 2016.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413