|
长江下游支流水阳江小流域土壤侵蚀与土地覆被变化研究
|
Abstract:
[1] | Montgomery, D.R. (2007) Soil Erosion and Agricultural Sustainability. PNAS, 104, 13268-13272.
https://doi.org/10.1073/pnas.0611508104 |
[2] | FAO (2015) Status of the World’s Soil Resources. Food and Ag-riculture Organization of the United Nations, Rome. |
[3] | Liu, B.Y., Xie, Y., Li, Z.G., et al. (2020) The Assessment of Soil Loss by Water Erosion in China. International Soil and Water Conservation Research, 8, 430-439. https://doi.org/10.1016/j.iswcr.2020.07.002 |
[4] | 沈吉, 薛滨, 吴敬禄, 等. 湖泊沉积与环境演化[M]. 北京: 科学出版社, 2010: 1-10. |
[5] | 刘乙淼, 陈艳梅, 胡引翠. 长江流域土壤保持能力时空特征[J]. 长江流域资源与环境, 2015, 24(6): 971-977. |
[6] | 张玉华, 韩凤翔. 长江流域水土流失类型分区及防治对策探讨[J]. 人民长江, 2013, 44(10): 105-108. |
[7] | 张志强, 李肖. 论水土保持在长江经济带发展战略中的地位与作用[J]. 人民长江, 2019, 50(1): 7-12. |
[8] | 刘同庆, 陈有朋. 长江中下游流域水土流失遥感调查和监测在基础地质环境评价中的应用[J]. 安徽地质, 2010, 20(4): 287-290. |
[9] | 查良松, 邓国徽, 谷家川. 1992-2013年巢湖流域土壤侵蚀动态变化[J]. 地理学报, 2015, 70(11): 1708-1719. |
[10] | 张玉刚, 卢慧中, 曹龙熹, 等. 太湖流域片土壤侵蚀现状与变化[J]. 中国水土保持科学, 2016, 14(3): 26-34. |
[11] | Fang, G.H., Yuan, T., Zhang, Y., et al. (2019) Integrated Study on Soil Ero-sion Using RUSLE and GIS in Yangtze River Basin of Jiangsu Province (China). Arabian Journal of Geosciences, 12, 1-13.
https://doi.org/10.1007/s12517-019-4331-2 |
[12] | 姚书春, 薛滨. 长江下游青弋江水阳江流域湖泊环境演变[M]. 南京: 南京大学出版社, 2016: 20-25. |
[13] | 赵明松, 李德成, 张甘霖, 等. 基于RUSLE模型的安徽省土壤侵蚀及养分流失评估[J]. 土壤学报, 2016, 53(1): 28-38. |
[14] | 徐小倩, 高飞, 仰晓宇, 等. 基于遥感数据反演的南漪湖水质时空变化监测[J]. 再生资源与循环经济, 2020, 13(4): 31-34. |
[15] | 王荣娟, 张金池. 石臼湖湿地水环境质量评价及富营养化状况研究[J]. 湿地科学与管理, 2011, 7(2): 26-28. |
[16] | WRB (World Reference Base) for Soil Re-sources (2014) International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Rome. |
[17] | Walling, D.E. and He, Q. (1999) Improved Models for Estimating Soil Erosion Rates from Cesium-137 Measurements. Journal of Environmental Quality, 28, 611-622. https://doi.org/10.2134/jeq1999.00472425002800020027x |
[18] | Walling, D.E. and He, Q. (2001) Models for Converting Measurements of Environmental Radionuclide Inventories (137Cs, Excess 210Pb, and 7Be) to Estimates of Soil Erosion and Deposition Rates (Including Software for Model Implementation). Report to IAEA, University of Exeter, Exeter. |
[19] | Zhang, X.B., Higgitt, D.L. and Walling, D.E. (1990) A Preliminary Assessment of the Potential for Using Caesium- 137 to Estimate Rates of Soil Erosion in the Loess Plateau of China. Hydrological Sciences, 35, 243-252.
https://doi.org/10.1080/02626669009492427 |
[20] | Walling, D.E. and Quine, T.A. (1993) Use of Caesium-137 as a Tracer of Erosion and Sedimentation: Handbook for the Application of the Caesium-137 Technique. University of Exeter, Exeter. |
[21] | 王小雷, 杨浩, 赵其国, 等. 137Cs法估算宁镇山脉地区黄棕壤侵蚀作用的初步研究[J]. 水土保持学报, 2009, 23(2): 32-36. |
[22] | Legarda, F., Romero, L.M., Herranz, M., et al. (2011) Inventory and Vertical Migration of 137Cs in Spanish Mainland Soils. Journal of Environmental Radioactivity, 102, 589-597. https://doi.org/10.1016/j.jenvrad.2011.03.007 |
[23] | Zhang, Y., Yang, H., Du, M.Y., et al. (2003) Soil Erosion Study on Hillside in Southern Jiangsu Province Using the Cesium-137 Tracer Technique. Soil Science & Plant Nutrition, 49, 85-92.
https://doi.org/10.1080/00380768.2003.10409983 |
[24] | Ritchie, J.C. and Mchenry, J.R. (1990) Application of Ra-dioactive Fallout Caesium-137 for Measuring Soil Erosion and Sediment Accumulation Rates and Patterns: A Review. Journal of Environmental Quality, 19, 215-233.
https://doi.org/10.2134/jeq1990.00472425001900020006x |
[25] | Walling, D.E., He, Q. and Appleby, P.C. (2002) Conversion Models for Use in Soil-Erosion, Soil Redistribution, and Sedimentation Investigations. In: Zapata, F., Ed., Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radioactivity, Kluwer Academic Publishers, Dordrecht, 111-164.
https://doi.org/10.1007/0-306-48054-9_7 |
[26] | Wang, X.L., Xue, B., Yao, S.C., et al. (2019) 137Cs Estimates of Soil Erosion Rates in a Small Catchment on a Channelized River Floodplain in the Lower Reaches of Yangtze River, China. Journal of Environmental Radioactivity, 208-209, Article ID: 106008. https://doi.org/10.1016/j.jenvrad.2019.106008 |
[27] | 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998: 244-245. |
[28] | Tang, X.Y., Yang, H., Zhao, Q.G., et al. (2002) 137Cs Depth Distribution in Haplic-Udic Ferrosols of Southern China and Its Implication for Soil Erosion. Soil Science, 167, 147-163. https://doi.org/10.1097/00010694-200202000-00007 |
[29] | Chen, S.K., Liu, C.W., Chen, Y.R., et al. (2012) As-sessing Soil Erosion in a Terraced Paddy Field Using Experimental Measurements and Universal Soil Loss Equation. Catena, 95, 131-141. https://doi.org/10.1016/j.catena.2012.02.013 |
[30] | 韩洪云, 喻永红. 退耕还林的环境价值及政策可持续性——以重庆万州为例[J]. 中国农村经济, 2012(11): 44-55. |
[31] | 梅莹, 牛栋瑜, 赵建东. 安徽省退耕还林绩效与后续发展研究[J]. 安徽农业大学学报(社会科学版), 2007(16): 24-27. |
[32] | Cao, S., Tian, T., Chen, L., et al. (2010) Damage Caused to the Environment by Reforestation Policies in Arid and Semi-Arid Areas of China. Ambio, 39, 279-283. https://doi.org/10.1007/s13280-010-0038-z |
[33] | Jia, X.X., Shao, M.A., Zhu, Y.J., et al. (2017) Soil Moisture Decline Due to Afforestation across the Loess Plateau, China. Journal of Hydrology, 546, 113-122. https://doi.org/10.1016/j.jhydrol.2017.01.011 |