全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

长江下游支流水阳江小流域土壤侵蚀与土地覆被变化研究
Study on Soil Erosion Rates and Land Cover Changes in a Small Catchment on Shuiyangjiang River, a Tributary in the Lower Reaches of Yangtze River

DOI: 10.12677/AEP.2021.111006, PP. 51-61

Keywords: 土壤侵蚀,土地覆被变化,长江下游地区,137Cs,退耕还林
Soil Erosion
, Land Cover Changes, Lower Reaches of the Yangtze River, 137Cs, Returning Farmland to Forest

Full-Text   Cite this paper   Add to My Lib

Abstract:

长江下游地区人类活动频繁,土地覆被变化强烈致使土壤侵蚀相对严重。本研究以长江下游支流水阳江–郎川河流域为研究对象,首先确定该区域土壤中137Cs的背景值为1275 Bq m?2,并结合相关侵蚀模型,对该区域的土壤侵蚀速率进行了定量估算。同时基于1985~2015年8期高分辨率遥感影像,在ENVI 5.2支持下,对研究区的土地覆被变化进行了遥感定量解译。结果表明:该区域水稻田占主导的耕作土土壤侵蚀速率小于非耕作土。非耕作土中土壤侵蚀速率大小依次为:林地(非马尾松) > 马尾松 > 板栗树 > 樟树 > 竹林 > 稀疏林。过去30余年间,该研究区建设用地面积呈增加趋势,耕地面积呈下降趋势,林草地以2000年为转折点呈现先下降后上升趋势,这与不同时期的土地利用政策密切相关。对比新老茶园的土壤侵蚀速率大小,其结果反映了农耕地退耕转变为茶园加速了土壤侵蚀。从水土保持角度考虑,保持当前的土地利用方式可以有效降低该区域的土壤侵蚀。
Serious soil erosion was occurred in the lower reaches of the Yangtze River of China due to land cover destroyed by frequent human activities. Taking the Langchuan catchment of Shuiyangjiang River, a tributary in the lower Reaches of Yangtze River as the study area, the objects of this study were to determine the 137Cs reference inventory in a 70-year old paddy field, to estimate the soil erosion rates in uncultivated/cultivated lands, and to interpret the land cover changes based on the remote sensing images of 1985~2015. Results indicated that soil erosion rates in cultivated land dominated by paddy were lower than that in uncultivated land. Soil erosion rates in uncultivated land were in order: Woodland > Pinus massoniana > Camphor trees > Castanea mollissima > Bam-boo > Sparse trees. In the past 30 years, the changed area of constructed land showed an increasing trend, but a decreasing trend in cultivated land. At the meanwhile, the area of forest and grassland was transformed from decrease to increase in late 1990s, which is in accordance with the policy of returning farmland to forest. Compared with soil erosion rates of new and old tea-trees, soil erosion was accelerated by frequent human disturbance. To reduce soil erosion in the study area, it is very necessary to maintain the current land use types in the long run.

References

[1]  Montgomery, D.R. (2007) Soil Erosion and Agricultural Sustainability. PNAS, 104, 13268-13272.
https://doi.org/10.1073/pnas.0611508104
[2]  FAO (2015) Status of the World’s Soil Resources. Food and Ag-riculture Organization of the United Nations, Rome.
[3]  Liu, B.Y., Xie, Y., Li, Z.G., et al. (2020) The Assessment of Soil Loss by Water Erosion in China. International Soil and Water Conservation Research, 8, 430-439.
https://doi.org/10.1016/j.iswcr.2020.07.002
[4]  沈吉, 薛滨, 吴敬禄, 等. 湖泊沉积与环境演化[M]. 北京: 科学出版社, 2010: 1-10.
[5]  刘乙淼, 陈艳梅, 胡引翠. 长江流域土壤保持能力时空特征[J]. 长江流域资源与环境, 2015, 24(6): 971-977.
[6]  张玉华, 韩凤翔. 长江流域水土流失类型分区及防治对策探讨[J]. 人民长江, 2013, 44(10): 105-108.
[7]  张志强, 李肖. 论水土保持在长江经济带发展战略中的地位与作用[J]. 人民长江, 2019, 50(1): 7-12.
[8]  刘同庆, 陈有朋. 长江中下游流域水土流失遥感调查和监测在基础地质环境评价中的应用[J]. 安徽地质, 2010, 20(4): 287-290.
[9]  查良松, 邓国徽, 谷家川. 1992-2013年巢湖流域土壤侵蚀动态变化[J]. 地理学报, 2015, 70(11): 1708-1719.
[10]  张玉刚, 卢慧中, 曹龙熹, 等. 太湖流域片土壤侵蚀现状与变化[J]. 中国水土保持科学, 2016, 14(3): 26-34.
[11]  Fang, G.H., Yuan, T., Zhang, Y., et al. (2019) Integrated Study on Soil Ero-sion Using RUSLE and GIS in Yangtze River Basin of Jiangsu Province (China). Arabian Journal of Geosciences, 12, 1-13.
https://doi.org/10.1007/s12517-019-4331-2
[12]  姚书春, 薛滨. 长江下游青弋江水阳江流域湖泊环境演变[M]. 南京: 南京大学出版社, 2016: 20-25.
[13]  赵明松, 李德成, 张甘霖, 等. 基于RUSLE模型的安徽省土壤侵蚀及养分流失评估[J]. 土壤学报, 2016, 53(1): 28-38.
[14]  徐小倩, 高飞, 仰晓宇, 等. 基于遥感数据反演的南漪湖水质时空变化监测[J]. 再生资源与循环经济, 2020, 13(4): 31-34.
[15]  王荣娟, 张金池. 石臼湖湿地水环境质量评价及富营养化状况研究[J]. 湿地科学与管理, 2011, 7(2): 26-28.
[16]  WRB (World Reference Base) for Soil Re-sources (2014) International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Rome.
[17]  Walling, D.E. and He, Q. (1999) Improved Models for Estimating Soil Erosion Rates from Cesium-137 Measurements. Journal of Environmental Quality, 28, 611-622.
https://doi.org/10.2134/jeq1999.00472425002800020027x
[18]  Walling, D.E. and He, Q. (2001) Models for Converting Measurements of Environmental Radionuclide Inventories (137Cs, Excess 210Pb, and 7Be) to Estimates of Soil Erosion and Deposition Rates (Including Software for Model Implementation). Report to IAEA, University of Exeter, Exeter.
[19]  Zhang, X.B., Higgitt, D.L. and Walling, D.E. (1990) A Preliminary Assessment of the Potential for Using Caesium- 137 to Estimate Rates of Soil Erosion in the Loess Plateau of China. Hydrological Sciences, 35, 243-252.
https://doi.org/10.1080/02626669009492427
[20]  Walling, D.E. and Quine, T.A. (1993) Use of Caesium-137 as a Tracer of Erosion and Sedimentation: Handbook for the Application of the Caesium-137 Technique. University of Exeter, Exeter.
[21]  王小雷, 杨浩, 赵其国, 等. 137Cs法估算宁镇山脉地区黄棕壤侵蚀作用的初步研究[J]. 水土保持学报, 2009, 23(2): 32-36.
[22]  Legarda, F., Romero, L.M., Herranz, M., et al. (2011) Inventory and Vertical Migration of 137Cs in Spanish Mainland Soils. Journal of Environmental Radioactivity, 102, 589-597.
https://doi.org/10.1016/j.jenvrad.2011.03.007
[23]  Zhang, Y., Yang, H., Du, M.Y., et al. (2003) Soil Erosion Study on Hillside in Southern Jiangsu Province Using the Cesium-137 Tracer Technique. Soil Science & Plant Nutrition, 49, 85-92.
https://doi.org/10.1080/00380768.2003.10409983
[24]  Ritchie, J.C. and Mchenry, J.R. (1990) Application of Ra-dioactive Fallout Caesium-137 for Measuring Soil Erosion and Sediment Accumulation Rates and Patterns: A Review. Journal of Environmental Quality, 19, 215-233.
https://doi.org/10.2134/jeq1990.00472425001900020006x
[25]  Walling, D.E., He, Q. and Appleby, P.C. (2002) Conversion Models for Use in Soil-Erosion, Soil Redistribution, and Sedimentation Investigations. In: Zapata, F., Ed., Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radioactivity, Kluwer Academic Publishers, Dordrecht, 111-164.
https://doi.org/10.1007/0-306-48054-9_7
[26]  Wang, X.L., Xue, B., Yao, S.C., et al. (2019) 137Cs Estimates of Soil Erosion Rates in a Small Catchment on a Channelized River Floodplain in the Lower Reaches of Yangtze River, China. Journal of Environmental Radioactivity, 208-209, Article ID: 106008.
https://doi.org/10.1016/j.jenvrad.2019.106008
[27]  王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998: 244-245.
[28]  Tang, X.Y., Yang, H., Zhao, Q.G., et al. (2002) 137Cs Depth Distribution in Haplic-Udic Ferrosols of Southern China and Its Implication for Soil Erosion. Soil Science, 167, 147-163.
https://doi.org/10.1097/00010694-200202000-00007
[29]  Chen, S.K., Liu, C.W., Chen, Y.R., et al. (2012) As-sessing Soil Erosion in a Terraced Paddy Field Using Experimental Measurements and Universal Soil Loss Equation. Catena, 95, 131-141.
https://doi.org/10.1016/j.catena.2012.02.013
[30]  韩洪云, 喻永红. 退耕还林的环境价值及政策可持续性——以重庆万州为例[J]. 中国农村经济, 2012(11): 44-55.
[31]  梅莹, 牛栋瑜, 赵建东. 安徽省退耕还林绩效与后续发展研究[J]. 安徽农业大学学报(社会科学版), 2007(16): 24-27.
[32]  Cao, S., Tian, T., Chen, L., et al. (2010) Damage Caused to the Environment by Reforestation Policies in Arid and Semi-Arid Areas of China. Ambio, 39, 279-283.
https://doi.org/10.1007/s13280-010-0038-z
[33]  Jia, X.X., Shao, M.A., Zhu, Y.J., et al. (2017) Soil Moisture Decline Due to Afforestation across the Loess Plateau, China. Journal of Hydrology, 546, 113-122.
https://doi.org/10.1016/j.jhydrol.2017.01.011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133