全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

给Ni-Mn基Heusler合金磁致应变和磁热效应研究进展
Research Progress on Magnetic-Field-Induced Strain and Magnetocaloric Effect of Ni-Mn Base Heusler Alloys

DOI: 10.12677/CMP.2021.101003, PP. 15-24

Keywords: Heusler合金,Ni-Mn基,磁致应变,磁热效应
Heusler Alloys
, Ni-Mn Based, Magnetic-Field-Induced Strain, Magnetocaloric Effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ni-Mn基Heusler合金是一种新型的磁性功能材料。在磁场或者温度诱导下,该类合金可以发生热弹性马氏体相变或者磁场诱发的孪晶再取向,导致其在相变温度附近具有磁致应变,磁热,磁电阻等众多新颖的物理效应。本文主要讨论现阶段Ni-Mn基Heusler合金在磁致应变以及磁热效应方面的研究进展,研究整理了该现阶段该合金相关研究的现状及其存在的问题,相关研究结论可为Heusler合金的后续研究提供有益参考。
Ni-Mn based Heusler alloys are a new type of magnetic functional materials. Under the induction of magnetic field or temperature, these types of alloys can undergo thermoelastic martensitic phase transformation or magnetic field-induced twin reorientation, resulting in magnetic-field-induced strain, magnetocaloric, magnetoresistance and many other novel physical characteristics near the phase transition temperature. This article mainly discusses the current research progress of Ni/-Mn-based Heusler alloys in terms of magnetic-field-induced strain and magnetocaloric effects. The research summarizes the current status of alloys related research and existing problems at this stage. The relevant research conclusions can be the Heusler alloys Follow-up research provides useful reference.

References

[1]  De Groot, R.A., Mueller, F.M., Van Engen, P.G. and Buschow, K.H.J. (1983) Newclass of Materials: Half-Metallic Ferromagnets. Physical Review Letters, 50, 2024-2027.
https://doi.org/10.1103/PhysRevLett.50.2024
[2]  Casper, F., Graf, T., Chadov, S., Balke, B. and Felser, C. (2010) Half-Heusler Compound: Novel Materials for Spintronics and Energy Applications. IOP Chinese Academy of Science, 27, 1315-1322.
[3]  Liu, Z.H., Wu, Z.G., Ma, X.Q., Wang, W.H., Liu, Y. and Wu, G.H. (2011) Large Magnetization Change and Magnetoresistance Associated with Martensitic Transformation in Mn2Ni1.36Sn0.32Co0.32 Alloy. Journal of Applied Physics, 110, 957.
[4]  Bruno, N.M., Yegin, C., Karaman, I., Chen, J.H., Ross, J.H., Liu, J. and Li, J. (2014) The Effect of Heat Treatments on Ni43Mn42Co4Sn11 Me-ta-Magnetic Shape Memory Alloys for Magneticrefrigeration. Acta Materialia, 74, 66-84.
[5]  Sakamoto, T., Fukuda, T., Kakeshita, T., Takeuchi, T. and Kishio, K. (2003) Magnetic Field-Induced Strain in Iron-Based Ferromagnetic Shape Memory Alloys. Journal of Applied Physics, 93, 8647-8649.
https://doi.org/10.1063/1.1540132
[6]  James, R.D. and Wuttig, M. (1998) Magnetostriction of Martensite. Phil-osophical Magazine Letters, 77, 1273-1299.
https://doi.org/10.1080/01418619808214252
[7]  Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Oka-moto, S., Itakami, O.K., Oikawa, K., Fujita, A., Kanomata, T., Ishida, K. (2006) Magnetic-Field-Induced Shape Recovery by Reverse Phase Transformation. Nature, 439, 957-960.
https://doi.org/10.1038/nature04493
[8]  Xuan, H.C., Shen, L.J., Tang, T., Cao, Q.Q., Wang, D.H. and Du, Y.W. (2012) Magnetic-Field-Induced Reverse Martensitic Transformation and Large Magnetoresistance in Ni50-xCoxMn32Al18 Heusler Alloys. Applied Physics Letters, 100, Article ID: 172410.
[9]  Graf, T., Felser, C. and Parkin, S.S.P. (2011) Simple Rules for the Understanding of Heusler Compounds. Progress in Solid State Chemistry, 39, 1-50.
[10]  Zhang, X., Zhang, H., Qian, M. and Geng, L. (2018) Enhanced Magnetocaloric Effect in Ni-Mn-Sn-Co Alloys with Two Suc-cessive Magnetostructural Transformations. Scientific Reports, 8, Artice No. 8235.
[11]  Han, Z., Wang, D., Qian, B., Feng, J., Jiang, X. and Du, Y. (2010) Phase Transitions, Magnetocaloric Effect and Magnetoresistance in Ni-Co-Mn-Sn Ferromagnetic Shape Memory Alloy. Japanese Journal of Applied Physics, 49, Article ID: 010211.
https://doi.org/10.1143/JJAP.49.010211
[12]  Khan, M., Jung, J., Stoyko, S.S., Mar, A., Quetz, A., Samanta, T., Dubenko, I., Ali, N., Stadler, S., Chow, K.H. (2012) The Role of Ni-Mn Hybridization on the Martensitic Phase Transi-tions in Mn-Rich Heusler Alloys. Applied Physics Letters, 100, 172403-172404.
https://doi.org/10.1063/1.4705422
[13]  Modak, R., Srinivasu, V.V. and Srinivasan, A. (2018) Effect of Cu/Fe/Co Substitution on Static and Dynamic Magnetic Properties of Ni-Mn-Sn Alloy Thin Films. Journal of Magnetism and Magnetic Materials, 464, 50-55.
https://doi.org/10.1016/j.jmmm.2018.05.050
[14]  Kim, S.J., Ryu, W.H., Oh, H.S. and Park, E.S. (2018) A Large Reversible Room Temperature Magneto-Caloric Effect in Ni-TM-Co-Mn-Sn (TM=Ti, V, Cr) Meta-Magnetic Heusler Alloys. Journal of Applied Physics, 123, Article ID: 033903.
https://doi.org/10.1063/1.5000147
[15]  Zhang, C.L., Zou, W.Q., Xuan, H.C. and Giant, Z. (2007) Low-Field Magnetic Entropy Changes in Ni45Mn44-xCrxSn11 Ferromag-netic Shape Memory Alloys. Journal of Physics D: Applied Physics, 40, 7287-7290.
https://doi.org/10.1088/0022-3727/40/23/005
[16]  Cong, D.Y., Roth, S., P?tschke, M., Hürrich, C. and Schultz, L. (2010) Phase Diagram and Composition Optimization for Magnetic Shape Memory Effect in Ni-Co-Mn-Sn Alloys. Ap-plied Physics Letters, 97, Article ID: 021908.
https://doi.org/10.1063/1.3454239
[17]  许云丽. Ni/Co基铁磁性哈斯勒合金的微结构及磁性研究[D]: [博士学位论文]. 北京: 北京科技大学, 2018.
[18]  Ullakko, K., Huang, J.K., Kantner, C., O’Handley, R.C. and Kokorin, V.V. (1996) Large Magnetic-Field-Induced Strains in Ni2MnGa Single Crystals. Applied Physics Letters, 69, 1966-1968.
https://doi.org/10.1063/1.117637
[19]  Murray, S.J., Marioni, M., Allen, S.M., O’Handley, R.C., Lograsso, T.A. (2000) 6% Magnetic-Field-Induced Strain by Twin-Boundary Motion in Ferromagnetic Ni-Mn-Ga. Applied Physics Let-ters, 77, 886.
https://doi.org/10.1063/1.1306635
[20]  Sozinov, A., Likhachev, A.A., Lanska, N. and Ullakko, K. (2002) Giant Magnetic-Field-Induced Strain in NiMnGa Seven-Layered Martensitic Phase. Applied Physics Letters, 80, 1746-1748.
https://doi.org/10.1063/1.1458075
[21]  Chmielus, M., Zhang, X.X., Witherspoon, C., Dunand, D.C. and Müllner, P. (2009) Giant Magnetic-Field-Induced Strains in Polycrystalline Ni-Mn-Ga Foams. Nature Materials, 8, 863-866.
https://doi.org/10.1038/nmat2527
[22]  Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K. and Oikawa, K. (2004) Magnetic and Martensitic Transformations of NiMnX(X=In,Sn,Sb) Ferromagnetic Shape Memory Alloys. Applied Physics Letters, 85, 4358-4360.
https://doi.org/10.1063/1.1808879
[23]  Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T. and Ishida, K. (2006) Magnetic-Field-Induced Shape Recovery by Reverse Phase Transformation. Nature, 439, 957-960.
https://doi.org/10.1038/nature04493
[24]  Kainuma, R., Imano, Y., Ito, W., Morito, H., Sutou, Y., Oikawa, K., Fu-jita, A., Ishida, K., Okamoto, S., Kitakami, O. and Kanomata, T. (2014) Metamagnetic Shape Memory Effect in a Heu-sler-Type Ni43Co7Mn39Sn11 Polycrystalline Alloy. Applied Physics Letters, 105, 1966-4497.
[25]  丰焱. Ni-Mn-In基合金的马氏体相变结构和性能[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2009.
[26]  Liu, Z.H., Liu, H., Zhang, X.X., Zhang, M., Dai, X.F., Hu, H.N., et al. (2004) Martensitic Transformation and Magnetic Properties of Heusler Al-loy Ni-Fe-Ga Ribbon. Physics Letters A, 329, 214-220.
https://doi.org/10.1016/j.physleta.2004.06.088
[27]  Morito, H., Fujita, A., Oikawa, K., Ishida, K., Fukamichi, K. and Kainuma, R. (2007) Stress-Assisted Magnetic-Field-Induced Strain in Ni-Fe-Ga-Co Ferromagnetic Shape Memory Alloys. Applied Physics Letters, 90, Article ID: 062505.
https://doi.org/10.1063/1.2450667
[28]  Li, Z., Dong, S., Li, Z., Yang, B., Liu, F., Sánchez-Valdés, C.F., Sánchez Llamazares, J.L., Zhang, Y., Esling, C., Zhao, X. and Zuo, L. (2019) Giant Low-Field Magnetocaloric Effect in Si Alloyed Ni-Co-Mn-In Alloys. Scripta Materialia, 159, 113-118.
https://doi.org/10.1016/j.scriptamat.2018.09.029
[29]  Sánchez-Alarcos, V., Pérez-Landazábal, J.L., Recarte, V. and Urdiaín, A. (2015) Effect of Ti Addition on the Mechanical Properties and the Magnetocaloric Effect of Ni-Mn-In Meta-magnetic Shape Memory Alloys. Journal of Physics D-Applied Physics, 48, Article ID: 445006.
https://doi.org/10.1088/0022-3727/48/44/445006
[30]  Qu, Y., Cong, D., Sun, X., Nie, Z., Gui, W., Li, R., Ren, Y. and Wang, Y. (2017) Giant and Reversible Room-Temperature Magnetocaloric Effect in Ti-Doped Ni-Co-Mn-Sn Mag-netic Shape Memory Alloys. Acta Materialia, 134, 236-248.
https://doi.org/10.1016/j.actamat.2017.06.010
[31]  Pathak, K., Khan, M., Dubenko, I., Stadler, S. and Alil, N. (2007) Large Magnetic Entropy Change in Ni50Mn50-xInx Heusler Alloys. Applied Physics Letters, 90, Article ID: 262504.
https://doi.org/10.1063/1.2752720
[32]  Hamid Elsheikh, M., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Haji Hassan, M., Ali Bashir, M.B. and Mohamad, M. (2014) A Review on Thermoelectric Renewable Energy: Principle Parameters That Affect Their Performance. Renewable and Sustainable Energy Reviews, 30, 337-355.
https://doi.org/10.1016/j.rser.2013.10.027
[33]  Gao, B., Hu, F.X., Shen, J., Wang, J., Sun, J.R. and Shen, B.G. (2009) Field-Induced Structural Transition and the Related Magnetic Entropy Change in Ni43Mn43Co3Sn11 Alloy. Journal of Magnetism and Magnetic Materials, 321, 2571-2574.
https://doi.org/10.1016/j.jmmm.2009.03.047
[34]  Hu, F.X., Gao, J., Qian, X.L., Ilyn, M., Tishin, A.M., Sun, J.R., Shen, B.G. (2005) Magnetocaloric Effect in Itinerant Elec-tron Metamagnetic Systems La(Fe1-xCox)11.9Si1.1. Journal of Applied Physics, 97, Article ID: 10M303.
https://doi.org/10.1063/1.1847071
[35]  Buchelnikov, V.D. and Sokolovskiy, V.V. (2011) Magnetocaloric Effect in Ni-Mn-X (X=Ga, In, Sn, Sb) Heusler Alloys. Physics of Metals and Metallography, 112, 633-665.
https://doi.org/10.1134/S0031918X11070052
[36]  Han, Z.D., Wang, D.H., Zhang, C.L., Tang, S.L., Gu, B.X. and Du, Y.W. (2006) Large Magnetic Entropy Changes in the Ni45.4Mn41.5In13.1 Ferromagnetic Shape Memory Alloy. Applied Physics Letters, 89, 395-524.
https://doi.org/10.1063/1.2385147
[37]  Krenke, T., Duman, E., Acet, M., Wassermann, E., Moya, X., Ma?osa, L., Planes, A., Suard, E. and Ouladdiaf, B. (2007) Magnetic Superelasticity and Inverse Magnetocaloric Effect in Ni-Mn-In. Physical Review B, 75, Article ID: 104414.
https://doi.org/10.1103/PhysRevB.75.104414
[38]  Hu, F., Shen, B. and Sun, J. (2000) Magnetic Entropy Change in Ni51.5Mn22.7Ga25.8 Alloy. Applied Physics Letters, 76, 3460-3462.
https://doi.org/10.1063/1.126677
[39]  Pasquale, M., Sasso, C.P., Lewis, L.H. and Giudici, L. (2005) Magneto-structural Transition and Magnetocaloric Effect in Ni55Mn20Ga25 Single Crystals. Physical Review B, 72, Article ID: 094435.
https://doi.org/10.1103/PhysRevB.72.094435
[40]  Krenke, T., Duman, E., Acet, M., Wassermann, E.F. and Ou-laddiaf, B. (2007) Magnetic Superelasticity and Inverse Magnetocaloric Effect in Ni-Mn-In. Physical Review B, 75, Arti-cle ID: 104414.
https://doi.org/10.1103/PhysRevB.75.104414
[41]  Wu, D.Z., Xue, S.C., Frenzel, J., Eggeler, G., Zhai, Q.J. and Zheng, H.X. (2012) Atomic Ordering Effect in Ni50Mn37Sn13 Magnetocaloric Ribbons. Materials Science and Engineer-ing: A, 534, 568-572.
https://doi.org/10.1016/j.msea.2011.12.009
[42]  Ma, L., Zhang, H.W., Yu, S.Y., Zhu, Z.Y., Chen, J.L. and Wu, G.H. (2008) Magnetic-Field-Induced Martensitic Transformation in MnNiGa: Co Alloys. Applied Physics Letters, 92, Article ID: 032509.
https://doi.org/10.1063/1.2838343
[43]  Ito, W., Imano, Y., Kainuma, R., Sutou, Y., Oikawa, K. and Ishida, K. (2007) Martensitic and Magnetic Transformation Behaviors in Heusler-Type NiMnIn and NiCoMnIn Metamagnetic Shape Memory Alloys. Metallurgical & Materials Transactions A, 38, 759-766.
https://doi.org/10.1007/s11661-007-9094-9
[44]  Zhang, H., Qian, M., Zhang, X., Wei, L., Cao, F., Xing, D., Cui, X., Sun, J. and Geng, L. (2016) Martensite Transformation and Magnetic Properties of Fe-Doped Ni-Mn-Sn Alloys with Dual Phases. Journal of Alloys and Compounds, 689, 481-488.
https://doi.org/10.1016/j.jallcom.2016.07.282
[45]  Emre, B., Bruno, N.M., Emre, S.Y. and Karaman, I. (2014) Ef-fect of Niobium Addition on the Martensitic Transformation and Magnetocaloric Effect in Low Hysteresis NiCoMnSn Magnetic Shape Memory Alloys. Applied Physics Letters, 105, Article ID: 231910.
https://doi.org/10.1063/1.4903494
[46]  Sánchez-Alarcos, V., López-García, J., Unzueta, I., Pérez-Landazábal, J.I., Recarte, V., Beato-López, J.J., García, J.A., Plazaola, F., Rodríguez-Velamazán, J.A. (2014) Magnetocaloric Effect En-hancement Driven by Intrinsic Defects in a Ni45Co5Mn35Sn15 Alloy. Journal of Alloys and Compounds, 774, 586-592.
https://doi.org/10.1016/j.jallcom.2018.10.016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133