|
Applied Physics 2021
铝合金型材弯曲成型及回弹数值模拟研究
|
Abstract:
铝合金作为汽车轻量化的主要材料,具有广泛的应用前景,如何准确评价铝合金型材弯曲成型及回弹性能对于工业生产具有重大的应用价值。针对铝合金型材的弯曲回弹,本文采用ABAQUS数值软件进行了有限元模拟,并将模拟结果与实验结果对比分析,验证模拟的可靠性。利用仿真结果获得了型材弯曲回弹时应力、应变的变化情况,给出了阻尼系数与回弹量误差之间的关系。结果表明,回弹前各部位对应的应力、应变值均大于回弹后的,应力、应变最大处基本在同一位置。回弹偏差受到阻尼系数的影响,误差最小在10%,因此数值模拟对实际产品生产有一定指导意义。
As the main material for automobile lightweight, aluminum alloy has a wide range of application prospects. Accurate evaluation of the bending forming and resilience performance of aluminum alloy profiles has great application value for industrial production. Aiming at the bending springback of aluminum alloy profiles, ABAQUS numerical software was used in this paper to carry out finite element simulation, and the simulation results were compared with the experimental results to verify the reliability of the simulation. The simulation results were used to obtain the stress and strain changes of the profile during bending and springback, and the relationship between the damping coefficient and the springback error was given. The results show that the corresponding stress and strain values of each part before springback are larger than those after springback, and the maximum stress and strain are basically at the same position. The springback deviation is affected by the damping coefficient, and the minimum error is 10%. Therefore, numerical simulation has certain guiding significance for actual product production.
[1] | 宋政璞, 韩学剑, 邵竑泽. 高强度组合式铝合金工业平台国内外研究现状及发展趋势分析[J]. 中国设备工程, 2020(11): 251-253. |
[2] | 王亮, 刘京涛. 铝合金汽车板材弯曲性能测试方法[J]. 理化检验(物理分册), 2019, 55(8): 569-571. |
[3] | 马青梅, 张悦, 刘兴武, 钟伟柱, 王聪. 铝合金型材力学及弯曲性能的影响因素[J]. 热处理技术与装备, 2017, 38(3): 33-37. |
[4] | Zhang, W.P., Hu, Z.L., Li, H.H., et al. (2019) Experimental and Numerical Investigation on Springback of Automotive Aluminum Alloy Sheet. Rare Metal Materials and Engineering, 48, 2130-2137. |
[5] | Hu, Z., Cheng, H., Jiang, B., et al. (2013) Simulation on Springback of V-Shaped Stamping Aluminum Alloy Sheet for Lightweight Automobile. Hot Working Technology, 42, 89-92. |
[6] | 郭佳. 基于数值模拟的铝合金矩形管变形回弹问题研究[J]. 铸造技术, 2014, 35(12): 3003-3004, 3007. |
[7] | 王晓林, 周贤宾. 金属板弹塑性非圆弧弯曲回弹的计算[J]. 塑性工程学报, 1996(4): 27-33. |
[8] | Bu, X., Zhai, H., Zhou, L., et al. (2019) Numerical Simulation Research on Stretch-Bending Process for Pi-Section Aluminum Alloy Profiles. Journal of Plasticity Engineering, 26, 151-161. |
[9] | Wu, J., Xiong, W., Luo, Z., et al. (2015) Finite Element Simulation of Stretch Bending on Aluminum Alloy Extrusions. Forging & Stamping Technology, 40, 54-59. |
[10] | 蔡洋, 王小松, 苑世剑. 预弯对铝合金管材内高压成形缺陷与尺寸精度的影响[J]. 材料工程, 2017, 45(9): 108-115. |
[11] | 余国庆, 鲁世红. 基于有限元分析的铝合金板料弯曲回弹的影响因素研究[J]. 机械科学与技术, 2005, 24(9): 1077-1080, 1117. |
[12] | 肖冠云, 谢世坤, 黄菊花, 郑慧玲. 基于PFEA、ANN和GA的U形件成形板料形状优化[J]. 模具工业, 2006, 31(12): 1-5. |
[13] | 韩雄伟, 李欣星, 陈祖红. 基于BP神经网络的铝合金板料弯曲回弹控制研究[J]. 模具工业, 2011, 37(9): 22-26. |
[14] | 刁法玺, 张凯锋. 板料V形弯曲回弹的动力显式有限元分析[J]. 材料科学与工艺, 2002, 10(2): 170-174. |