全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

激光选区熔化制备外太空轻质钻具的研究进展
Research Progress of Selective Laser Melting to Fabricate Outer Space Lightweight Drilling Tools

DOI: 10.12677/MET.2021.101004, PP. 33-43

Keywords: 激光选区熔化,轻量化,外太空,钻头,点阵结构
Selective Laser Melting
, Lightweight, Outer Space, Drill, Lattice Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,外太空钻采受到越来越多的关注,随着外太空研究的不断深入,外太空运载的高成本和运载能力的限制,制约了外太空钻探的发展,亟待轻量化的钻探设备来突破瓶颈。激光选区熔化技术的出现为轻量化结构的发展提供了理想的途径,可用于外太空轻质钻具的研究制造。文章综述了航天领域对于轻量化的要求以及轻量化装备的研究现状,对激光选区熔化技术特点进行了总结和概括并指出其在轻量化结构制造中的优势,以取样钻头为例阐述了外太空钻探装备的研究现状,提出利用激光选区熔化制备外太空轻质钻具,并从轻量点阵结构出发对激光选区熔化技术制备外太空轻质钻具的可行性进行了分析。
In recent years, outer space drilling has received more and more attention. With the deepening of outer space research, the high cost of outer space transportation and the limitation of carrying capacity have restricted the development of outer space drilling, and there is an urgent need for lightweight drilling equipment to break through the bottleneck. The emergence of selective laser melting technology provides an ideal way for the development of lightweight structures, which can be used in the research and manufacture of lightweight drilling tools in outer space. The article summarizes the requirements for lightweight in the aerospace field and the research status of lightweight equipment, generalizes the characteristics of selective laser melting technology, and points out its advantages in lightweight structure’s manufacturing, and uses sampling drills as an example to illustrate outer space drilling. According to the research status of equipment, the use of selective laser melting to prepare outer space lightweight drilling tools is proposed, and the feasibility of selective laser melting technology to prepare outer space lightweight drilling tools is analyzed from the light-weight lattice structure.

References

[1]  Kleiner, M., Geiger, M. and Klaus, A. (2003) Manufacturing of Lightweight Components by Metal Forming. CIRP Annals, 52, 521-542.
https://doi.org/10.1016/S0007-8506(07)60202-9
[2]  Hu, J.H., Liu, X.X., Sun, H.X., et al. (2013) Development and Application of Light-Weight Design of the Aluminum Alloy Wheel. Applied Mechanics and Materials, 2341, 253-257.
https://doi.org/10.4028/www.scientific.net/AMM.310.253
[3]  王金梅, 钟险峰, 王万朋, 于大勇. 武器系统轻量化设计技术研究[J]. 兵器装备工程学报, 2017, 38(12): 131-134.
[4]  刘景博, 刘世锋, 杨鑫, 李安, 时明军, 张光曦, 张智昶, 韩松. 金属增材制造技术轻量化应用研究进展[J]. 中国材料进展, 2020, 39(2): 163-168.
[5]  郭韦华. 轻量化技术在汽车工程中的应用[J]. 工程技术研究, 2020, 5(3): 127-128.
[6]  王军武, 刘旭贺, 王飞超, 肖阳. 航空航天用高性能超轻镁锂合金[J]. 军民两用技术与产品, 2013(6): 21-24.
[7]  欧阳自远. 月球探测进展与我国的探月行动(下) [J]. 自然杂志, 2005(5): 253-257+246.
[8]  涂传连. 基于Voronoi图的3D打印轻量化结构设计及其应用研究[D]: [博士学位论文]. 杭州: 浙江大学, 2019.
[9]  徐仁新. 太空探测开发力助大国崛起——当前天文学发展的深刻社会意义[J]. 人民论坛学术前沿, 2017(5): 27-32.
[10]  John, W., Marcia, D. and Eric, H. (2007) Recent Advances in Near-Net-Shape Fabrication of Al-Li Alloy 2195 for Launch Vehicles: 20080013435. NASA, Washington DC.
[11]  Sawaryn, S.J., Bustin, P., Cain, M.G., et al. (2018) Lunar Drilling—Challenges and Opportunities. SPE Annual Technical Conference and Exhibition, Dallas, September 2018, SPE-191624-MS.
https://doi.org/10.2118/191624-MS
[12]  张立武, 韩冬, 王常建. 固体火箭发动机金属件制造技术[M]. 西安: 西北工业大学出版社, 2016.
[13]  王惠芬, 杨碧琦, 刘刚. 航天器结构材料的应用现状与未来展望[J]. 材料导报, 2018, 32(S1): 395-399.
[14]  Evans, A.G., Hutchinson, J.W., Fleck, N.A., et al. (2001) The Topological Design of Multifunctional Cellular Metals. Progress in Materials Science, 46, 309-327.
https://doi.org/10.1016/S0079-6425(00)00016-5
[15]  熊健. 轻质复合材料新型点阵结构设计及其力学行为研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2013.
[16]  王晓燕. 3D打印在航空航天领域的六大切入点[J]. 世界制造技术与装备市场, 2018(1): 68-74.
[17]  朱健峰. 点阵结构机械性能分析与应用[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2019.
[18]  Wadley, H.N.G. (2006) Multifunctional Periodic Cellular Metals. Philosophical Transactions of the Royal Society. Mathematical, Physical, and Engineering Sciences, 364, 31-68.
https://doi.org/10.1098/rsta.2005.1697
[19]  冯刚顶, 陈超, 张明皓, 曾冲, 张昌达. 对月球重力场特征的理解[J]. 地球物理学进展, 2007, 22(3): 729-736.
[20]  何录忠. 月表取心钻头旋转切削热分析及模拟实验研究[D]: [硕士学位论文]. 北京: 中国地质大学, 2015.
[21]  Schaedler, T.A., Jacobsen, A.J., Torrents, A., et al. (2011) Ultralight Metallic Microlattices. Science, 334, 962-965.
https://doi.org/10.1126/science.1211649
[22]  Queheillalt, D. and Wadley, H. (2009) Titanium Alloy Lattice Truss Structures. Materials & Design, 30, 1966-1975.
https://doi.org/10.1016/j.matdes.2008.09.015
[23]  Pham, M.S., Liu, C., Todd, I., et al. (2019) Damage-Tolerant Architected Materials Inspired by Crystal Microstructure. Nature, 565, 305-311.
https://doi.org/10.1038/s41586-018-0850-3
[24]  Panesar, A., Abdi, M., Hickman, D. and Ashcroft, I. (2018) Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing. Additive Manufacturing, 19, 81-94.
https://doi.org/10.1016/j.addma.2017.11.008
[25]  王向明, 苏亚东, 吴斌, 张瑞, 王福雨, 汪嘉兴, 邢本东. 微桁架点阵结构在飞机结构/功能一体化中的应用[J]. 航空制造技术, 2018, 61(10): 16-25.
[26]  李涤尘, 田小永, 王永信, 等. 增材制造技术的发展[J]. 电加工与模具, 2012(A1): 20-22.
[27]  卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4.
[28]  杨强, 鲁中良, 黄福享, 李涤尘. 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术, 2016, 59(12): 26-31.
[29]  Olakanmi, E.O., Cochrane, R.F. and Dalgarno, K.W. (2015) A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties. Progress in Materials Science, 74, 401-477.
https://doi.org/10.1016/j.pmatsci.2015.03.002
[30]  李海亮, 贾德昌, 杨治华, 段小明, 蔡德龙, 周玉. 选区激光熔化3D打印钛合金及其复合材料研究进展[J]. 材料科学与工艺, 2019, 27(2): 1-15.
[31]  闫超. 基于激光选区熔化快速制造的零件模型重构与结构再设计方法研究[D]: [硕士学位论文]. 长沙: 国防科学技术大学, 2015.
[32]  Bamberg, J., Zenzinger, G. and Ladewig, A. (2016) In-Process Control of Selective Laser Melting by Quantitative Optical Tomography. Proceedings of the 19th World Conference on Non-Destructive Testing, Munich, 13-17 June 2016.
[33]  王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698.
[34]  杨展, 谭松成, 杨凯华. 3D打印金属基金刚石复合材料的试验研究[J]. 金刚石与磨料磨具工程, 2018, 38(1): 50-54.
[35]  Wu, J.J., Zhang, S.H. and Qu, F.L. (2019) Matrix Material for a New 3D-Printed Diamond-Impregnated Bit with Grid-Shaped Matrix. International Journal of Refractory Metals and Hard Materials, 82, 199-207.
https://doi.org/10.1016/j.ijrmhm.2019.04.017
[36]  田野. 双螺旋阻隔式月壤取芯钻具设计及其性能研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2015.
[37]  Gouache, T.P., Yang, G., Coste, P. and Gourinat, Y. (2011) First Experimental Investigation of Dual-Reciprocating Drilling in Planetary Regoliths: Proposition of Penetration Mechanics. Planetary and Space Science, 59, 1529-1541.
https://doi.org/10.1016/j.pss.2011.06.019
[38]  Pitcher, C. and Yang, G. (2015) Analysis of Drill Head Designs for Dual-Reciprocating Drilling Technique in Planetary Regoliths. Advances in Space Research: The Official Journal of the Committee on Space Research (COSPAR), 56, 1765-1776.
https://doi.org/10.1016/j.asr.2015.07.008
[39]  Hironaka, R. and Stanley, S. (2010) Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications. The 40th Aerospace Mechanisms Symposium, Orlando, 12-14 May 2010, CP-2010-216272.
[40]  Glass, B.J., Mckay, C., Thompson, S., et al. (2011) Automated Mars Drilling for “Icebreaker”. Aerospace Conference, 2011 IEEE, Big Sky, 5-12 March 2011, 1-7.
https://doi.org/10.1109/AERO.2011.5747262
[41]  Zacny, K., Bartlett, P., Davis, K., Glaser, D. and Gorevan, S. (2006) Test Results of Core Drilling in Simulated Ice-Bound Lunar Regolith for the Subsurface Access System of the Construction and Resource Utilization eXplorer (CRUX) Project. 1-8.
https://doi.org/10.1061/40830(188)64
[42]  李大佛, 雷艳, 许少宁. 月球钻探取心特种钻头研制与试验[J]. 地球科学(中国地质大学学报), 2013, 38(S1): 167-173.
[43]  刘志全, 王丽丽, 吴伟仁, 等. 月球钻取采样钻头结构参数对力学性能的影响[J]. 宇航学报, 2015, 36(12): 1339-1347.
[44]  邓宗全, 田野, 唐德威, 姜生元, 全齐全, 肖洪. 用于地外星体探测的一种新结构取心钻头研究[J]. 机械工程学报, 2013, 49(19): 104-110.
[45]  Kemurdzhian, A.L., Gromov, V.V. and Cherkasov, I.I. (1976) Automatic Stations for Investigation of the Lunar Surface. Mashinostroyeniye Press, Moscow.
[46]  Meyer, C. (2007) Synopsis of Deep Lunar Drill Strings. NASA Johnson Space Center, Houston.
[47]  Szwarc, T., Aggarwal, A. and Hubbard, S.A. (2012) Thermal Model for Analysis and Control of Drilling in Icy Formations on Mars. Planetary and Space Science, 73, 214-220.
https://doi.org/10.1016/j.pss.2012.09.003
[48]  蒋国盛, 鄢泰宁, 王荣璟, 张涛, 卢春华. 火星浅层钻探和取样技术分析[J]. 地质科技情报, 2008(1): 35-37.
[49]  江磊, 苏波, 王长科, 等. LBD模拟月壤研究[C]//中国宇航学会深空探测技术专业委员会第七届学术年会论文集. 哈尔滨: 中国宇航学会深空探测技术专业委员会, 2010: 198-204.
[50]  鄢泰宁, 补家武, 吴翔, 王荣璟. 试论月球表面钻探取样的难点与关键技术[J]. 地质科技情报, 2004(4): 12-14.
[51]  田野, 邓宗全, 唐德威, 姜生元, 侯绪研. 月壤钻探采样装置中的钻杆结构参数优化设计及模拟试验[J]. 机械工程学报, 2012, 48(23): 10-15.
[52]  Mukherjee, S.M.S., Bartlett, P., Glass, B., et al. (2006) Technologies for Exploring the Martian Subsurface. IEEE Aerospace Conference, Big Sky, 4-11 March 2006, 11.
[53]  Kris, Z., Paulsen, G., Davis, K., et al. (2010) Honeybee Robotics Planetary Drill Systems. Lunar and Planetary Science, Vol. 11, 56-66.
[54]  Kris, Z., Paulsen, G. and Mateusz, S. (2010) Challenges and Methods of Drilling on the Moon and Mars. IEEE Aerospace Conference, Big Sky, 6-13 March 2010, 1-9.
[55]  Kris, Z. (2009) Drilling in Extreme Environments—Penetration and Sampling on Earth and Other Planets. Deutsche Nationalbibliothek, Frankfurt, 124-534.
[56]  史晓萌. 模拟月壤钻进取芯力学建模及钻进策略研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2015.
[57]  Bartolomeu, F., Buciumeanu, M., Pinto, E., et al. (2017) Wear Behavior of Ti6Al4V Biomedical Alloys Processed by Selective Laser Melting, Hot Pressing and Conventional Casting. Transactions of Nonferrous Metals Society of China, 27, 829-838.
https://doi.org/10.1016/S1003-6326(17)60060-8
[58]  侯佑松. 月面钻取采样过程钻具热特性测试系统研制与试验研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133