全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进SURF算法的显微图像大范围拼接
Large Scale Microscopic Image Mosaic Based on SURF Algorithm

DOI: 10.12677/CSA.2021.112030, PP. 299-304

Keywords: 大范围测量,图像拼接,SURF算法,Harris角点,加权融合
Large Scale Measurement
, Image Mosaic, SURF Algorithm, Harris Corner, Weighted Fusion

Full-Text   Cite this paper   Add to My Lib

Abstract:

在实现大范围微结构测量时,白光干涉表面测量受限于单个光学视场的大小,不能看到完整的结构。为了获得大范围的视野效果,文中提出基于改进SURF算法对显微图像进行拼接。首先用Harris对图像进行特征点检测,然后对特征点进行描述符计算寻找点对之间的对应点对。再使用RANSAC对误配的点对进行删除,最后使用加权融合的方法来消除拼接缝。实验结果表明,该方法是有效的,可以将多次采集得到多幅图片拼成一幅完整的图片来实现大视野的测量。
In large-scale microstructure measurement, the white light interferometric surface measurement is limited by the size of a single optical field of view, and cannot see the complete structure. In order to obtain a wide range of visual field effect, this paper proposes an improved surf algorithm for micro-scopic image mosaic. Firstly, Harris is used to detect the feature points of the image, and then the descriptor of the feature points is calculated to find the corresponding point pairs. Then RANSAC is used to delete the mismatched point pairs, and the weighted fusion method is used to eliminate the seam. The experimental results show that the method is effective, and it can put multiple images collected many times into a complete image to realize the measurement of large field of vision.

References

[1]  刘进林, 等. 基于改进马尔科夫特征的图像拼接检测研究[J]. 信息技术与网络安全, 2020(2): 13-18.
[2]  Xie, R.P., Tu, J.M. and Yao, J. (2019) A Robust Projection Plane Selection Strategy for UAV Image Stitching. International Journal of Remote Sensing, 40, 3118-3138.
https://doi.org/10.1080/01431161.2018.1539273
[3]  王震, 许恒硕, 袁红亮, 汪国平. 基于抖动的导航路径图像无缝拼接方法仿真[J]. 计算机仿真, 2020, 37(1): 425-429.
[4]  刘尚, 李哲. 面向野外火灾监测的图像拼接技术研究[J]. 计算机与数字工程, 2020, 48(3): 653-657.
[5]  万国挺, 王俊平, 李锦, 等. 图像拼接质量评价方法[J]. 通信学报, 2013, 34(8): 76-81.
[6]  杨云涛, 冯莹, 曹毓, 等. 基于SURF的序列图像快速拼接方法[J]. 计算机技术与发展, 2011, 21(3): 6-9.
[7]  李穆, 路艳蒙, 韩帅虎, 等. 基于sift特征点的透射电子显微镜多幅图像拼接[J]. 南方医科大学学报, 2015, 35(9): 1251-1257.
[8]  邹承明, 侯小碧, 马静. 基于几何学图像配准的SIFT图像拼接算祛[J]. 华中科技大学学报(自然科学版), 2016, 44(4): 32-36.
[9]  张勇, 王志峰, 马文. 基于改进SIFT特征点匹配的图像拼接算法研究[J]. 微电子学与计算机, 2016, 33(3): 60-64.
[10]  Liu, Y.M., Chen, L.F. and Liu, Y. (2013) An Image Matching Algorithm Based on SIFT and Improved LTP. 2013 Ninth International Conference on Computational Intelligence and Security (CIS), 432-436.
https://doi.org/10.1109/CIS.2013.98
[11]  Bay, H., Tuytelaars, T. and Gool, L. (2006) SURF: Speeded up Robust Features. European Conference on Computer Vision, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11744023_32
[12]  李丽, 郭双双, 梅树立, 等. 基于特征点提取匹配的蝗虫切片图像的拼接和修复方法[J]. 农业工程学报, 2015, 31(7): 157-165.
[13]  卢钢, 张翼. 基于局部特征的医学显微图像自动拼接[J]. 计算机与数字工程, 2015, 43(5): 892-895.
[14]  Ma, L.L., Cao, C.M. and Chen, J.G. (2016) Feature Point Matching Algorithm Based on RA NSAC. Computer Engineering and Design, 37, 1793-1797.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133