|
基于转移熵的长江流域土壤湿度对降水反馈研究
|
Abstract:
[1] | 李泽君. 陆-气反馈关系的统计特征识别及建模研究[D]: [博士学位论文]. 武汉: 武汉大学, 2019.
LI Zejun. Statistical relationships identifying and modeling for land-atmosphere feedback. Ph.D. Thesis, Wuhan: Wuhan University, 2019. (in Chinese) |
[2] | 刘源. 中国境内土壤湿度-降水耦合强度研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2016.
LIU Yuan. A study of soil mositure-precipitation coupling strength in China. Master’s Thesis, Lanzhou: Lanzhou University, 2016. (in Chinese) |
[3] | 王健. 土壤湿度变化对全球陆-气耦合热点地区近地层温度影响的研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2018.
WANG Jian. Impact of soil moisture variations on near-surface temperature of land-atmosphere coupling hot spot regions. Master’s Thesis, Lanzhou: Lanzhou University, 2018. (in Chinese) |
[4] | FINDELL, K. L., ELTAHIR, E. A. B. An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resources Research, 1997, 33(4): 725-735. https://doi.org/10.1029/96WR03756 |
[5] | SALVUCCI, G. D., SALEEM, J. A., and KAUFMANN, R. Investigating soil moisture feedbacks on precipitation with tests of Granger causality. Advances in Water Resources, 2003, 25(8): 1305-1312. https://doi.org/10.1016/S0309-1708(02)00057-X |
[6] | FREMME, A., SODEMANN, H. The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley. Hydrology and Earth System Sciences, 2019, 23(6): 2525-2540. https://doi.org/10.5194/hess-23-2525-2019 |
[7] | KOSTER, R. D., DIRMEYER, P. A., GUO, Z. C., et al. Regions of strong coupling between soil moisture and precipitation. Science, 2004, 305(5687): 1138-1140. https://doi.org/10.1126/science.1100217 |
[8] | CHOW, K. C. Time-lagged effects of spring Tibetan Plateau soil moisture on the monsoon over China in early summer. International Journal of Climatology, 2007, 28(1): 55-67. https://doi.org/10.1002/joc.1511 |
[9] | 王林, 王磊, 等. 青藏高原春季土壤湿度对长江中下游地区初夏短期气候影响的数值模拟[J]. 成都信息工程大学学报, 2017(2): 81-88.
WANG Lin, WANG Lei, et al. An numerical simulation on the effect of spring soil moisture in Tibetan Plateau on early summer short-term climate over middle and lower reaches of Yangtze River. Journal of Chengdu University of Information Technology, 2017(2): 81-88. (in Chinese) |
[10] | Boé, J. Modulation of soil moisture-precipitation interactions over France by large scale circulation. Climate Dynamics, 2012, 40(3-4): 875-892. https://doi.org/10.1007/s00382-012-1380-6 |
[11] | KUMAR, P., GUPTA, H. V. Debates—Does information theory provide a new paradigm for earth science? Water Resources Research, 2020, 56(2): 1-13. https://doi.org/10.1029/2019WR026398 |
[12] | BRUNSELL, N. A. A multiscale information theory approach to assess spatial-temporal variability of daily precipitation. Journal of Hydrology, 2010, 385(1): 165-72(8). https://doi.org/10.1016/j.jhydrol.2010.02.016 |
[13] | GOODWELL, A. E., KUMAR, P. Temporal information partitioning networks (TIPNets): A process network approach to infer ecohydrologic shifts. Water Resources Research, 2017, 53(7): 5899-5919. https://doi.org/10.1002/2016WR020218 |
[14] | GOODWELL, A. E., KUMAR, P. Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting environmental variables. Water Resources Research, 2017, 53(7): 5920-5942.
https://doi.org/10.1002/2016WR020216 |
[15] | SILVA, V. D. P. R. D., FILHO, A. F. B., ALMEIDA, R. S. R., et al. Shannon information entropy for assessing space-time variability of rainfall and streamflow in semiarid region. Science of the Total Environment, 2016, 544: 330-338.
https://doi.org/10.1016/j.scitotenv.2015.11.082 |
[16] | FRANZEN, S. E., FARAHANI, M. A., and GOODWELL, A. E. Information flows: Characterizing precipitation-stream flow dependencies in the Colorado Headwaters with an information theory approach. Water Resources Research, 2020, 56(10).
https://doi.org/10.1029/2019WR026133 |
[17] | SCHREIBER, T. Measuring information transfer. Physical Review Letters, 2000, 85(2): 461-464.
https://doi.org/10.1103/PhysRevLett.85.461 |
[18] | ANDREW, B., BART, N., GENGXIN, O., et al. Quantifying process connectivity with transfer entropy in hydrologic models. Water Resources Research, 2019, 55(6): 4613-4629. https://doi.org/10.1029/2018WR024555 |
[19] | GOODWELL, A. E., KUMAR, P. A changing climatology of precipitation persistence across the United States using information-based measures. Journal of Hydrometeorology, 2019, 20(8): 1649-1666. https://doi.org/10.1175/JHM-D-19-0013.1 |
[20] | DU, J. Y., KIMBALL, et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave earth observations. Earth System Science Data, 2017, 9(2): 791-808. https://doi.org/10.5194/essd-9-791-2017 |
[21] | 苏辉. 降水与土壤湿度因果关系分析及预测研究[D]: [硕士学位论文]. 杭州: 杭州电子科技大学, 2018.
SU Hui. Causality analysis between precipitation and soil moisture and precipitation prediction. Master’s Thesis, Hangzhou: Hangzhou Dianzi University, 2018. (in Chinese) |
[22] | LAM, A., BIERKENS, M. F. P., and VAN DEN HURK, B. J. J. M. Global patterns of relations between soil moisture and rainfall occurrence in ERA-40. Journal of Geophysical Research: Atmospheres, 2007, 112(D17): D17116.
https://doi.org/10.1029/2006JD008222 |
[23] | MEI, R., WANG, G. Summer land-atmosphere coupling strength in the United States: Comparison among observations, reanalysis data, and numerical models. Journal of Hydrometeorology, 2012, 13(3): 1010-1022.
https://doi.org/10.1175/JHM-D-11-075.1 |
[24] | 邹海波. 鄱阳湖湖效应降水的统计分析与个例研究[D]: [博士学位论文]. 兰州: 兰州大学, 2020.
ZOU Haibo. Statistical analysis and cases studies of lake-effect precipitation over Poyang Lake. Ph.D. Thesis, Lanzhou: Lanzhou University, 2020. (in Chinese) |