全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

GR4J与新安江模型在湿润地区比较研究
Comparative Study of GR4J and Xinanjiang Models in Humid Area

DOI: 10.12677/JWRR.2021.101002, PP. 11-20

Keywords: 水文模型,比较分析,径流模拟,概率预报
Hydrological Model
, Comparison, Runoff Simulation, Probabilistic Forecast

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了比较不同水文模型在湿润地区的预报能力和效果,选用新安江流域上游屯溪水文站控制流域作为研究区域,分别利用GR4J和新安江模型对流域进行水文模拟,并开展洪水概率预报研究。结果表明:两个模型在湿润流域的模拟效果相当且都较好,GR4J和新安江模型模拟率定期和检验期的纳什效率系数(NSE)均达到90%以上,且相对误差(RE)较小;两模型在湿润流域均能进行可靠的概率预报,GR4J率定期和检验期的连续概率排位分数(CRPS)为18.73 m3/s、12.57 m3/s,其概率预报评价指标均相对于新安江模型更优,在概率预报方面性能稍好,精度较高;简单和复杂的模型在非特定条件下,可以取得同样效果,湿润地区的径流模拟、预报洪水可选择简单快捷的模型。
In order to compare the forecasting abilities and effects of different hydrological models in humid areas, GR4J and Xinanjiang models were used to simulate runoff and probability flood forecasts in the Tunxi basin. The results were summarized as follows: Nash-Sutcliffe efficiency coefficient (NSE) are both over 90% in calibration and validation period, the Relative error (RE) values are also small. Both models can carry out reliable probabilistic forecasts in humid basins. The Continuous ranked probability score (CRPS) values of GR4J in calibration and validation period are 18.73 m3/s and 12.57 m3/s respectively; moreover, most of its probabilistic forecast evaluation indicators are better than Xinanjiang model. GR4J model performs with higher accuracy in probabilistic forecasting. Simple and complex models can achieve the same effect under non-specific conditions, GR4J model is preferred for runoff simulation and flood forecasting in humid areas.

References

[1]  包为民. 水文预报第4版[M]. 北京: 水利水电出版社, 2009. BAO Weimin. Hydrological forecasting. Beijing: China Water & Power Press, 2009. (in Chinese)
[2]  邓鹏, 李致家. 3种水文模型在淮河息县流域洪水模拟中的比较[J]. 河海大学学报(自然科学版), 2013, 41(5): 377-382. DENG Peng, LI Zhijia. Comparison of three hydrological models in flood simulation for Xixian basin of Huaihe River. Journal of Hohai University (Natural Sciences), 2013, 41(5): 377-382. (in Chinese)
[3]  徐宗学, 等. 水文模型[M]. 北京: 科学出版社, 2009. XU Zongxue, et al. Hydrological model. Beijing: Science Press, 2009. (in Chinese)
[4]  刘章君, 郭生练, 许新发, 等. 贝叶斯概率水文预报研究进展与展望[J]. 水利学报, 2019, 50(12): 1467-1478. LIU Zhangjun, GUO Shenglian, XU Xinfa, et al. Bayesian probabilistic hydrological forecasting: Progress and prospects. Journal of Hydraulic Engineering, 2019, 50(12): 1467-1478. (in Chinese)
[5]  KRZYSZTOFOWICZ, R. Bayesian models of forecasted time series. Journal of the American Water Resources Association, 1985, 21(5): 805-814.
https://doi.org/10.1111/j.1752-1688.1985.tb00174.x
[6]  KRZYSZTOFOWICZ, R. Bayesian forecasting via deterministic model. Risk Analysis, 1999, 19(4): 739-749.
https://doi.org/10.1111/j.1539-6924.1999.tb00443.x
[7]  KRZYSZTOFOWICZ, R, EVANS, W. Probabilistic forecasts from the national digital forecast database. Weather and Forecasting, 2008, 23: 270.
https://doi.org/10.1175/2007WAF2007029.1
[8]  刘章君, 郭生练, 李天元, 等. 贝叶斯概率洪水预报模型及其比较应用研究[J]. 水利学报, 2014, 45(9): 1019-1028. LIU Zhangjun, GUO Shenglian, LI Tianyuan, et al. Comparative study of Bayesian probabilistic flood forecasting models. Journal of Hydraulic Engineering, 2014, 45(9): 1019-1028. (in Chinese)
[9]  刘章君, 许新发, 成静清, 温天福. 基于Copula函数的贝叶斯预报处理器研究及应用[C]//第十五届中国水论坛. 北京: 中国水利水电出版社, 2017: 330-336. LIU Zhangjun, XU Xinfa, CHENG Jingqing, and WEN Tianfu. Research and application of Bayesian prediction processor based on Copula function. In The 15th China Water Forum. Beijing: China Water & Power Press, 2017: 330-336. (in Chi-nese)
[10]  PERRIN, C., MICHEL, C., and ANDRéASSIAN, V. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 2003, 279(1-4): 275-289.
https://doi.org/10.1016/S0022-1694(03)00225-7
[11]  赵人俊. 流域水文模拟新安江模型与陕北模型[M]. 北京: 水利电力出版社, 1984. ZHAO Renjun. Hydrological model—Xinanjiang model and Shanbei model. Beijing: China Water & Power Press, 1984. (in Chinese)
[12]  VRUGT, J. A., GUPTA, H. V., BOUTEN, W., et al. A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 2003, 39(8): 1201.
https://doi.org/10.1029/2002WR001642
[13]  BA, H., GUO, S., ZHONG, Y., et al. Quantification of the forecast uncertainty using conditional probability and updating models. Hydrology Research, 2019, 50(6): 1751-1771.
https://doi.org/10.2166/nh.2019.094
[14]  崔震, 巴欢欢, 郭生练, 王俊, 等. 陆水水库洪水集合概率预报方法与应用研究[J]. 水资源研究, 2020, 9(6): 559-570. CUI Zhen, BA Huanhuan, GUO Shenglian, WANG Jun, et al. Ensemble probability flood forecasting method and application in Lushui reservoir. Journal of Water Resources Research, 2020, 9(6): 559-570. (in Chinese)
[15]  XIONG, L., WAN, M., WEI, X., et al. Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. Hydrological Sciences Journal, 2010, 54(5): 852-871.
https://doi.org/10.1623/hysj.54.5.852
[16]  THYER, M., RENARD, B., KAVETSKI, D., et al. Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis. Water Resources Research, 2009, 45(12): W00B14.
https://doi.org/10.1029/2008WR006825
[17]  LAIO, F., TAMEA, S. Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrology and Earth System Sciences, 2007, 11(82): 1267-1277.
https://doi.org/10.5194/hess-11-1267-2007
[18]  黄仕勇. 新安江流域“99?7”暴雨洪水及水库洪水调度分析[J]. 水文, 2003(1): 60-62. HUANG Shiyong. Analysis of the “99?7” storm flood and reservoir flood dispatch in Xin’anjiang basin. Hydrology, 2003(1): 60-62. (in Chinese)
[19]  郭生练. 设计洪水研究进展与评价[M]. 北京: 中国水利水电出版社, 2005. GUO Shenglian. Research progress and evaluation of design flood. Beijing: China Water & Power Press, 2005. (in Chi-nese)
[20]  NELSEN, R. B. An introduction to copulas. Berlin: Springer Science & Business Media, 2007.
[21]  ZHANG, L., SINGH, V. P. Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 2006, 11(2): 150-164.
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(150)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133