|
2018花莲Mw 6.4级地震同震二维形变与断层触发和运动机制研究
|
Abstract:
本文基于ALOS-2卫星PALSAR-2 SAR升降轨数据,提取了2018年台湾花莲Mw6.4级地震同震地表形变场。构建了基于升降轨InSAR观测的地表东西向和垂向形变解算模型,反演获得2018年花莲地震同震二维形变场。结果显示,跨米伦断层垂向形变量级差异最大,其上盘相对下盘抬升量级~0.28 m,苓顶断层上盘相对下盘也存在~0.2 m的抬升变形。东西向形变场显示,最大东向地表变形位于米伦断层上盘北段,量级~0.15 m,最大西向地表变形则位于米伦断层上盘南段和苓顶断层上盘,量级~0.4 m。综合二维同震形变、库伦应力传输和反演断层滑动分布发现:2018年Mw6.4级花莲地震主震断层为西向倾斜的隐伏断层,且破裂传播至了米伦断层西侧区域,并触发了苓顶断层和米伦断层的破裂;其中米伦断层为东向倾斜高角度断层,其同震破裂以左旋走滑为主并兼具逆冲运动,苓顶断层为西向倾斜高角度断层,其同震破裂为左旋走滑兼具逆冲运动;滑移反演模型显示最大滑移量为~1.8 m,位于孕震断层地下~5.5 km深度处。
The ascending and descending ALOS-2 satellite PALSAR-2 SAR images are used to extract the coseismic surface deformation fields of the 2018 Mw 6.4 earthquake occurring in the Hualian County of Taiwan. Hereby, we present a desirable mathematical model for solving ground deformation in east-west and vertical directions based on the ascending and descending InSAR observations and achieve the two-dimensional coseismic deformation fields of the 2018 Hualian Mw 6.4 earthquake. The results show that the most significant vertical deformation is across the Milun fault, and the largest vertical displacement difference between the hanging wall and the footwall is ~0.28 m. Another distinct vertical deformation zone is found near the Lingding fault, showing the uplift of ~0.2 m of the hanging wall with respect to the footwall. The east-west deformation field shows that the northern area on the hanging wall of the Milun fault experiences the maximum eastward surface displacement with a magnitude of ~0.15 m. The maximum westward ground displacement with a magnitude of ~0.4 m can be found in both the southern hanging wall of the Milun fault and the hanging wall of the Lingding fault. Due to the comprehensive analysis of the Coulomb stress change caused by the coseismic faulting motion, spatial distribution characteristics of the two-dimensional coseismic deformation, and inverted fault slip distribution, we find that the main fault of the 2018 Mw 6.4 Hualian earthquake is a blind west-dipping fault, and it may rupture and propagate to the western side of the Milun fault, triggering the ruptures of the Lingding and Milun faults. The Milun fault dips to east with a high dip angle, and the coseismic slip is predominated by the left-lateral strike-slip with slight thrust motion. The Lingding fault is characterized by a west-dipping high-angle fault plane, presenting the left-lateral strike-slip and thrust faulting. The maximum slip magnitude is ~1.8 m, and is located at the depth of ~5.5 km of the seismogenic fault.
[1] | USGS. M6.4-18km NNE of Hualian, Taiwan.
https://earthquake.usgs.gov/earthquakes/eventpage/us1000chhc/executive, 2018-02-06. |
[2] | 李海艳, 邵志刚, 马宏生, 等. 基于形变观测分析中国台湾东部花东纵谷断层运动特征[J]. 地学前缘, 2018, 25(1): 240-251. |
[3] | Huang, W.J., Johnson, K.M., Fukuda, J., et al. (2010) Insights into Active Tectonics of Eastern Taiwan from Analyses of Geodetic and Geologic Data. Journal of Geophysical Research: Solid Earth, 115, B03413.
https://doi.org/10.1029/2008JB006208 |
[4] | Yu, S.B., Chen, H.Y. and Kuo, L.C. (1997) Velocity Field of GPS Stations in the Taiwan Area. Tectonophysics, 274, 41-59. https://doi.org/10.1016/S0040-1951(96)00297-1 |
[5] | Yu, S.B., Kuo, L.C., Punongbayan, R.S., et al. (1999) GPS Observation of Crustal Deformation in the Taiwan-Luzon Region. Geophysical Research Letters, 26, 923-926. https://doi.org/10.1029/1999GL900148 |
[6] | Lee, J.C. and Angelier, J. (1993) Location of Active Deformation and Geodetic Data Analyses: An Example of the Longitudinal Valley Fault, Taiwan. Bulletin de la Société Géologique de France, 164, 533-570. |
[7] | Hsu, L. and Burgmann, R. (2006) Surface Creep along the Longitudinal Valley Fault, Taiwan from InSAR Measurements. Geophysical Research Letters, 33, L06312. https://doi.org/10.1029/2005GL024624 |
[8] | 李海艳, 邵志刚, 马宏生, 等. 基于InSAR形变数据分析台湾纵谷断层南段现今运动特征[J]. 地震, 2016, 36(3): 25-33. |
[9] | 中国地震信息网. 台湾花莲县附近海域6.4级地震[EB/OL].
http://news.ceic.ac.cn/CC20180204215642.html, 2018-02-04. |
[10] | Yang, Y.H., Hu, J.C., Tung, H., et al. (2018) Co-Seismic and Postseismic Fault Models of the 2018 Mw 6.4 Hualien Earthquake Occurred in the Junction of Collision and Subduction Boundaries Offshore Eastern Taiwan. Remote Sensing, 10, 1372. https://doi.org/10.3390/rs10091372 |
[11] | 方进, 许才军, 温扬茂, 等. 基于方差分量估计的2015年尼泊尔Mw7.8地震同震滑动分布[J]. 地球物理学报, 2019, 62(3): 923-939. |
[12] | 申文豪, 李永生, 焦其松, 等. 联合强震记录和InSAR/GPS结果的四川九寨沟7.0级地震震源滑动分布反演及其地震学应用[J]. 地球物理学报, 2019, 62(1): 115-129. |
[13] | 洪顺英, 董彦芳, 孟国杰, 等. 2008年10月西藏当雄MW6.3地震震后形变提取与余滑反演[J]. 地球物理学报, 2018, 61(12): 4827-4837. |
[14] | Daout, S., Jolivet, R., Lasserre, C., et al. (2016) Along-Strike Variations of the Partitioning of Convergence across the Haiyuan Fault System Detected by InSAR. Geophysical Journal International, 205, 536-547.
https://doi.org/10.1093/gji/ggw028 |
[15] | Garthwaite, M.C., Wang, H. and Wright, T.J. (2013) Broadscale Interseismic Deformation and Fault Slip Rates in the Central Tibetan Plateau Observed Using InSAR. Journal of Geophysical Research: Solid Earth, 118, 5071-5083.
https://doi.org/10.1002/jgrb.50348 |
[16] | Wicks, C., Weaver, C. and Bodin, P. (2013) InSAR Evidence for an Active Shallow Thrust Fault beneath the City of Spokane Washington, USA. Journal of Geophysical Research Atmospheres, 118, 1268-1276.
https://doi.org/10.1002/jgrb.50118 |
[17] | Chen, Y., Remy, D. and Froger, J.L. (2017) Long-Term Ground Displacement Observations Using InSAR and GNSS at Piton de la Fournaise Volcano between 2009 and 2014. Remote Sensing of Envi-ronment, 194, 230-247.
https://doi.org/10.1016/j.rse.2017.03.038 |
[18] | Huang, M.H. and Huang, H.H. (2018) The Complexity of the 2018 Mw 6.4 Hualien Earthquake in East Taiwan. Geophysical Research Letters, 45, 13249-13257. https://doi.org/10.1029/2018GL080821 |
[19] | Yen, J.Y., Lu, C.H., Dorsey, R., et al. (2019) Insights into Seismogenic Deformation during the 2018 Hualien, Taiwan, Earthquake Sequence from InSAR, GPS, and Modeling. Seismological Research Letters, 90, 78-87.
https://doi.org/10.1785/0220180228 |
[20] | Tung, H., Chen, H.Y., Hsu, Y.J., et al. (2019) Triggered Slip on Multifaults after the 2018 Mw 6.4 Hualien Earthquake by Continuous GPS and InSAR Measurements. Terrestrial, Atmospheric and Oceanic Sciences, 30, 285-300.
https://doi.org/10.3319/TAO.2019.04.03.01 |
[21] | Wegmuller, U. and Werner, C. (1997) Gamma SAR Processor and Interferometry Software. Proceedings of the 3rd ERS Symposium, Florence, 14-21 March 1997, 1687-1692. |
[22] | Goldstein, R.M. and Werner, C.L. (1998) Radar Interferogram Filtering for Geophysical Applications. Geophysical Research Letters, 25, 4035-4038. https://doi.org/10.1029/1998GL900033 |
[23] | Chen, C.W. and Zebker, H.A. (2002) Phase Unwrapping for Large SAR Interferograms: statistical Segmentation and Generalized Network Models. IEEE Transactions on Geoscience and Remote Sensing, 40, 1709-1719.
https://doi.org/10.1109/TGRS.2002.802453 |
[24] | 陈强, 杨莹辉, 刘国祥, 等. 基于边界探测的InSAR最小二乘整周相位解缠方法[J]. 测绘学报, 2012, 41(3): 441-448. |
[25] | Yang, Y.H., Tsai, M., Hu, J.C., et al. (2018) Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred along a Creeping Segment and Geothermal Field of the Philippine Fault. Geophysical Research Letters, 45, 2659-2668. https://doi.org/10.1002/2017GL076417 |
[26] | Yang, Y.H., Hu, J.C., Yassaghi, A., et al. (2018) Midcrustal Thrusting and Vertical Deformation Partitioning Constraint by 2017 Mw 7.3 Sarpol Zahab Earthquake in Zagros Mountain Belt, Iran. Seismological Research Letters, 89, 2204-2213. https://doi.org/10.1785/0220180022 |
[27] | Huang, S.Y., Yen, J.Y., Wu, B.L., et al. (2019) Investigating the Milun Fault: The Coseismic Surface Rupture Zone of the 2018/02/06 ML 6.2 Hualien Earthquake, Taiwan. Terrestrial, Atmospheric and Oceanic Science Journal, 30, 1-14.
https://doi.org/10.3319/TAO.2018.12.09.03 |
[28] | Tsai, M.C. (2018) Multiple-Fault Triggering Induced by the February 2018 Mw 6.4 Offshore Hualien Earthquake, Taiwan: Insights from Geodetic Measurements. Japan Geoscience Union Meeting, Chiba, 20-24 May 2018, STI23-09. |
[29] | Shyu, J.B.H., Chung, L.H., Chen, Y.G., et al. (2007) Re-Evaluation of the Surface Ruptures of the November 1951 Earthquake Series in Eastern Taiwan, and Its Neotectonic Implications. Journal of Asian Earth Sciences, 31, 317-331.
https://doi.org/10.1016/j.jseaes.2006.07.018 |
[30] | 刘国祥, 张瑞, 李陶, 等. 基于多卫星平台永久散射体雷达干涉提取三维地表形变速度场[J]. 地球物理学报, 2012, 55(8): 2598-2610. |
[31] | Mouammad, A.G., Tsehaie, W. and Valentyn, A.T. (2011) Surface Deformation Caused by April 6th 2009 Earthquake in L’Aquila (Italy): Acomparative Analysis from ENVISAT ASAR, ALOS PALSAR and ASTER. International Journal of Applied Earth Observation and Geoinformation, 13, 801-811. https://doi.org/10.1016/j.jag.2011.05.014 |
[32] | 洪顺英, 申旭辉, 单新建, 等. 基于升降轨ASAR的于田Ms7.3级地震同震形变场信息提取与分析[J]. 国土资源遥感, 2010(4): 98-102. |
[33] | Hu, J., Li, Z.W. and Ding, X.L. (2014) Resolving Three-Dimensional Surface Displacements from InSAR Measurements: A Review. Earth-Science Reviews, 133, 1-17. https://doi.org/10.1016/j.earscirev.2014.02.005 |
[34] | Fialko, Y., Simons, M. and Agnew, D. (2001) The Complete (3-D) Surface Displacement Field in the Epicentral Area of the 1999 MW 7.1 Hector Mine Earthquake, California, from Space Geodetic Observations. Geophysical Research Letters, 28, 3063-3066. https://doi.org/10.1029/2001GL013174 |
[35] | Jung, H.S., Won, J.S. and Kim, S.W. (2009) An Improvement of the Performance of Multiple-Aperture SAR Interferometry (MAI). IEEE Transactions on Geoscience and Remote Sensing, 47, 2859-2869.
https://doi.org/10.1109/TGRS.2009.2016554 |
[36] | 胡俊, 李志伟, 张磊, 等. 多孔径InSAR技术电离层校正方法及二维形变场应用研究——以玉树地震为例[J]. 中国科学地球科学, 2013, 43(3): 457-468. |
[37] | Harris, R.A. (1998) Introduction to Special Section: Stress Triggers, Stress Shadow and Implications for Seismic Hazard. Journal of Geophysical Research, 103, 24347-24358. https://doi.org/10.1029/98JB01576 |
[38] | Stein, R.S. (1999) The Role of Stress Transfer in Earthquake Occurrence. Nature, 402, 605-609.
https://doi.org/10.1038/45144 |
[39] | 杨莹辉. 基于InSAR观测同震地表形变场反演汶川地震断层滑移[D]: [博士学位论文]. 成都: 西南交通大学, 2015. |