|
复合光催化剂TiO2/g-C3N4的光催化性能的研究
|
Abstract:
TiO2负载于类石墨相氮化碳(g-C3N4)中形成复合光催化剂的制备、表征及可见光条件下对水溶液中有机污染物降解性能。利用机械混合法制备出TiO2/g-C3N4纳米复合光催化剂。对所制备的TiO2/g-C3N4复合光催化剂进行详细的表征,利用染料RhB和作为目标降解物来对其光催化性能进行测评。制备的复合光催化剂在可见光激发下相比于单一的g-C3N4和单一的TiO2性能有很大的提高。TiO2/g-C3N4复合光催化剂光催化性能的提高可以归结于TiO2和g-C3N4两种半导体的协同作用和光生载流子的有效分离,使得TiO2半导体光催化剂的应用前景大大提高。TiO2与g-C3N4的协同作用提高了光催化活性,TiO2/g-C3N4复合光催化剂可以循环使用3次,且降解率只有略微的下降,这个发现极大地拓宽了TiO2/g-C3N4复合光催化剂的应用范围。
TiO2 is loaded with the preparation, characterization and visible light conditions of the composite photocatalyst in the graphite phase nitride carbon (g-C3N4) for the degradation of organic pollutants in aqueous solution. The TiO2/g-C3N4 nanocomposite photocatalyst was prepared by mechanical mixing. The preparation of the TiO2/g-C3N4 composite photocatalyst was detailed, and the photocatalytic performance was assessed using the dye RhB and the target degradation material. The composite photocatalyst was enhanced by the visible light compared to the single g-C3N4 and single TiO2 performance. The improvement of photocatalytic performance of TiO2/g-C3N4 composite photocatalyst can be attributed to the synergistic effect of TiO2 and g-C3N4 semiconductors and the effective separation of photo generated carriers, which greatly improves the application prospect of TiO2 semiconductor photocatalyst. TiO2 and g-C3N4 synergy to improve the photocatalytic activity of TiO2/g-C3N4 composite photocatalyst can be recycled three times, and the degradation rate is only slightly reduced. This discovery greatly expanded the application of the TiO2/g-C3N4 composite light catalyst.
[1] | 徐垚. 硫及金属硫化物——类石墨相氮化碳纳米复合材料的制备, 表征及其光催化性能的研究[D]: [博士学位论文]. 广州: 华南理工大学, 2015. |
[2] | Tuhin, P., Mowpriya, D., Constantin, G., et al. (2021) Metal-Free Photosensi-tized Oxyimination of Unactivated Alkenes with bifunctional Oxime Carbonates. Nature Catalysis, 4, 54-61. https://doi.org/10.1038/s41929-020-00553-2 |
[3] | Tao, W., Wang, M., Nie, S., et al. (2019) Immobilization of TiO2 Powder for the Treatment of Polluted Water. Applied Surface Science, 17, 25-36. https://doi.org/10.1016/S0926-3373(97)00101-X |
[4] | Pei, W., Li, F., Liu, J.Y., et al. (2020) Enhanced Photocata-lytic Activity of Jamun-Like Zn2V2O7/C-Dots/g-C3N4 Nanocomposites for Rhodamine B Degradation under the Visible Light Radiation. Journal of Materials ScienceuMaterials in Electronics, 31, 1-12. |
[5] | Kubacka, A., Fernández, G.M. and Colón, G. (2012) Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chemical Reviews, 112, 1555. https://doi.org/10.1021/cr100454n |
[6] | Xu, Y. and Zhang, W.D. (2014) Sulfur/g-C3N4 Composites with Enhanced Visible Light Photocatalytic Activity. Science of Advanced Materials, 6, 2611-2617. https://doi.org/10.1166/sam.2014.2011 |
[7] | Zhou, J.H., Deng, C.Y., Zhao, X.L., et al. (2011) Study on the Effect of EDTA on the Photocatalytic Reduction of Mercury onto Nanocrystalline Titania Using Quartz Crystal Microbalance and Differential Pulse Voltammetry. Electrochimica Acta, 56, 2062. https://doi.org/10.1016/j.electacta.2010.11.047 |
[8] | Xu, Y., E, Y.F. and Wang, G.N. (2019) Controlled Growth of “Cookie-Like” ZnIn2S4 Nanoparticles on g-C3N4 for Enhanced Visible Light Photocatalytic Activity. Inorganic Chemis-try Communications, 108, Article ID: 107485.
https://doi.org/10.1016/j.inoche.2019.107485 |
[9] | Nagappagari, L.R., Samanta, S., Sharma, N., et al. (2020) Syn-ergistic Effect of a Noble Metal Free Ni(OH)2 Co-Catalyst and a Ternary ZnIn2S4/g-C3N4 Heterojunction for Enhanced Visible Light Photocatalytic Hydrogen Evolution. Sustainable Energy & Fuels, 4, 750-759. https://doi.org/10.1039/C9SE00704K |
[10] | Xu, Y. and Zhang, W.D. (2015) CdS/g-C3N4 Hybrids with Improved Photostability and Visible Light Photocatalytic Activity. European Journal of Inorganic Chemistry, 10, 1744-1751. https://doi.org/10.1002/ejic.201403193 |