全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nanobiotechnology for the Detection and Control of Waterborne Parasites

DOI: 10.4236/oje.2021.113016, PP. 203-223

Keywords: Parasites, Water, Nanobiotechnology, Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nowadays, the fast development of nanobiotechnology, has led to rapid diagnosis of important infectious diseases such as arboviruses-borne diseases, vector-borne infections and waterborne parasites diseases and others in order to reduce and avoid further dissemination of the infections within the general population. Furthermore, new nanomedicines based on the application of silver and gold nanoparticles which are less toxic, more effective, and that does not generate resistance could help to solve the problems of parasitic disease like leishmaniasis and chagas disease. It turns out that the combination of nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells but also enhances their ability to destroy bacteria by facilitating the binding of antibiotics to the microbes. Moreover, combining nanoparticles with antimicrobial peptides and essential oils with nanoparticles generates genuine synergy against microbial resistance.

References

[1]  Wang, Y., Yu, L., Kong, X. and Sun, L. (2017) Application of Nanodiagnostics in Point-of-Care Tests for Infectious Diseases. International Journal of Nanomedicine, 12, 4789-4803.
https://doi.org/10.2147/IJN.S137338
[2]  Hikal, W.M. (2020) Parasitic Contamination of Drinking Water and Egyptian Standards for Parasites in Drinking Water. Open Journal of Ecology, 10, 1-21.
https://doi.org/10.4236/oje.2020.101001
[3]  Farhoudi, R. (2017) An Overview on Recent New Nano-Anti-Parasitological Findings and Application. Advances in Nano Research, 5, 49-59.
https://doi.org/10.12989/anr.2017.5.1.049
[4]  World Health Organization (2020) World Malaria Report 2020.
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020
[5]  Kotloff, K.L., Nataro, J.P., Blackwelder, W.C., Nasrin, D., Farag, T.H., Panchalingam, S., et al. (2013) Burden and Aetiology of Diarrhoeal Disease in Infants and Young Children in Developing Countries (the Global Enteric Multicenter Study, GEMS): A Prospective, Case-Control Study. Lancet, 382, 209-222.
https://doi.org/10.1016/S0140-6736(13)60844-2
[6]  Momcilovic, S., Cantacessi, C., Arsić-Arsenijević, V., Otranto, D.S. and Tasić-Otašević, S. (2019) Rapid Diagnosis of Parasitic Diseases: Current Scenario and Future Needs. Clinical Microbiology and Infection, 25, 290-309.
https://doi.org/10.1016/j.cmi.2018.04.028
[7]  Fauci, A.S. and Morens, D.M. (2012) The Perpetual Challenge of Infectious Diseases. New England Journal of Medicine, 366, 454-461.
https://doi.org/10.1056/NEJMra1108296
[8]  Hauck, T.S., Giri, S., Gao, Y. and Chan, W.C.W. (2010) Nanotechnology Diagnostics for Infectious Diseases Prevalent in Developing Countries. Advanced Drug Delivery Reviews, 62, 438-448.
https://doi.org/10.1016/j.addr.2009.11.015
[9]  Tham, J.M., Lee, S. H., Tan, T.M.C., Ting, R.C.Y. and Kara, U.A.K. (1999) Detection and Species Determination of Malaria Parasites by PCR: Comparison with Microscopy and with Para Sight-F and ICT Malaria Pf Tests in a Clinical Environment. Journal of Clinical Microbiology, 37, 1269-1273.
https://doi.org/10.1128/JCM.37.5.1269-1273.1999
[10]  Wilson, M.R., Naccache, S.N., Samayoa, E., Biagtan, M., Bashir, H. and Yu, G. et al. (2014) Actionable Diagnosis of Neuroleptospirosis by Next-Generation Sequencing. New England Journal of Medicine, 370, 2408-2417.
https://doi.org/10.1056/NEJMoa1401268
[11]  Golding, C.G., Lamboo, L.L., Beniac, D.R. and Booth, T.F. (2016) The Scanning Electron Microscope in Microbiology and Diagnosis of Infectious Disease. Scientific Reports , 6, Article No. 26516.
https://doi.org/10.1038/srep26516
[12]  Laksanasopin, T., Guo, T.W., Nayak, S., Sridhara, A.A., Xie, S., Olowookere, O.O., et al. (2015) A Smartphone Dongle for Diagnosis of Infectious Diseases at the Point of Care. Science Translational Medicine, 7, 273re1.
https://doi.org/10.1126/scitranslmed.aaa0056
[13]  Bhushan, B., Tang, W. and Ge, S. (2010) Nanomechanical Characterization of Skin and Skin Cream. Journal of Microscopy, 240, 135-144.
https://doi.org/10.1111/j.1365-2818.2010.03407.x
[14]  Arangoa, M.A., Campanero, M.A., Renedo, M.J., Ponchel, G. and Irache, J.M. (2001) Gliadin Nanoparticles as Carriers for the Oral Administration of Lipophilic Drugs. Relationship between Bioadhesion and Pharmacokinetics. Pharmaceutical Research, 18, 1521-1527.
https://doi.org/10.1023/A:1013018111829
[15]  Oowaki, H., Matsuda, S., Sakai, N., Ohta, T., Iwata, H., Sadato, A., Taki, W., Hashimoto, N. and Ikada, Y. (2000) Non-Adhesive Cyanoacrylate as an Embolic Material for Endovascular Neurosurgery. Biomaterials, 21, 1039-1046.
https://doi.org/10.1016/S0142-9612(99)00278-1
[16]  Bratovcic, A. (2020) Nanocomposite Hydrogels Reinforced by Carbon Nanotubes. International Journal of Engineering Research and Applications, 10, 30-41.
[17]  Chai, F., Sun, L., Ding, Y., Liu, X., Zhang, Y., Webster, T.J. and Zheng, C. (2016) A Solid Self-Nanoemulsifying System of the BCS Class IIb Drug Dabigatran Etexilate to Improve Oral Bioavailability. Nanomedicine, 11, 1801-1816.
https://doi.org/10.2217/nnm-2016-0138
[18]  Sun, L., Fan, Z., Wang, Y., Huang, Y., Schmidt, M. and Zhang, M. (2015) Tunable Synthesis of Self-Assembled Cyclic Peptide Nanotubes and Nanoparticles. Soft Matter, 11, 3822-3832.
https://doi.org/10.1039/C5SM00533G
[19]  Wang, Y., Yi, S., Sun, L., Huang, Y. and Zhang, M. (2014) Charge-Selective Fractions of Naturally Occurring Nanoparticles as Bioactive Nanocarriers for Cancer Therapy. Acta Biomaterialia, 10, 4269-4284.
https://doi.org/10.1016/j.actbio.2014.06.020
[20]  Sun, L., Huang, Y., Bian, Z., Petrosino, J., Fan, Z. and Fan, Y., et al. (2016) Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing. ACS Applied Materials & Interfaces, 8, 2423-2434.
https://doi.org/10.1021/acsami.5b11811
[21]  Bratovcic, A. (2020) Biosynthesis of Green Silver Nanoparticles and Its UV-Vis Characterization. International Journal of Innovative Science, Engineering & Technology, 7, 170-176.
[22]  Abu-Dalo, M., Jaradat, A., Albiss, B.A. and Al-Rawashdeh, N.A.F. (2019) Green Synthesis of TiO2 NPs/Pristine Pomegranate Peel Extract Nanocomposite and Its Antimicrobial Activity for Water Disinfection. Journal of Environmental Chemical Engineering, 7, Article ID: 103370.
https://doi.org/10.1016/j.jece.2019.103370
[23]  Rai, M. and Kon, K. (2015) Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases. Academic Press, Cambridge, 344 p.
[24]  Bratovcic, A. (2019) Different Applications of Nanomaterials and Their Impact on the Environment. International Journal of Material Science and Engineering, 5, 1-7.
https://doi.org/10.14445/23948884/IJMSE-V5I1P101
[25]  Mihai, A.D., Chircov, C., Grumezescu, A.M. and Holban, A.M. (2020) Magnetite Nanoparticles and Essential Oils Systems for Advanced Antibacterial Therapies. International Journal of Molecular Sciences, 21, 7355.
https://doi.org/10.3390/ijms21197355
[26]  Bratovcic, A. (2020) Nanomaterials in Food Processing and Packaging, Its Toxicity and Food Labeling. Acta Scientific Nutritional Health, 4, 7-13.
[27]  Mirkin, C.A., Letsinger, R.L., Mucic, R.C. and Storhoff, J.J. (1996) A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature, 382, 607-609.
https://doi.org/10.1038/382607a0
[28]  Silva, S.M., Tavallaie, R., Sandiford, L., Tilley, R.D. and Gooding, J.J. (2016) Gold Coated Magnetic Nanoparticles: From Preparation to Surface Modification for Analytical and Biomedical Applications. Chemical Communications, 52, 7528-7540.
https://doi.org/10.1039/C6CC03225G
[29]  Wu, W., Jiang, C.Z. and Roy, V.A.L. (2016) Designed Synthesis and Surface Engineering Strategies of Magnetic Iron Oxide Nanoparticles for Biomedical Applications. Nanoscale, 8, 19421-19474.
https://doi.org/10.1039/C6NR07542H
[30]  Kolosnjaj-Tabi, J., Lartigue, L., Javed, Y., Luciani, N., Pellegrino, T., Wilhelm, C., Alloyeau, D. and Gazeau, F. (2016) Biotransformations of Magnetic Nanoparticles in the Body. Nanotoday, 11, 280-284.
https://doi.org/10.1016/j.nantod.2015.10.001
[31]  Duguet, E., Vasseur, S., Mornet, S. and Devoisselle, J.M. (2006) Magnetic Nanoparticles and Their Applications in Medicine. Nanomedicine, 1, 157-168.
https://doi.org/10.2217/17435889.1.2.157
[32]  Gu, H.W., Xu, K.M., Xu, C.J. and Xu, B. (2006) Biofunctional Magnetic Nanoparticles for Protein Separation and Pathogen Detection. Chemical Communications, No. 9, 941-949.
https://doi.org/10.1039/B514130C
[33]  Yuen, C. and Liu, Q. (2012) Magnetic Field Enriched Surface Enhanced Resonance Raman Spectroscopy for Early Malaria Diagnosis. Journal of Biomedical Optics, 17, Article ID: 017005.
https://doi.org/10.1117/1.JBO.17.1.017005
[34]  Jeon, W., Lee S., Manjunatha, D. and Ban, C. (2013) A Colorimetric Aptasensor for the Diagnosis of Malaria Based on Cationic Polymers and Gold Nanoparticles. Analytical Biochemistry, 439, 11-16.
https://doi.org/10.1016/j.ab.2013.03.032
[35]  Zheng, T. and Huo, Q. (2020) A Nanoparticle Pseudo Pathogen for Rapid Detection and Diagnosis of Virus Infection. Sensors International, 1, Article ID: 100010.
https://doi.org/10.1016/j.sintl.2020.100010
[36]  Krampa, F.D., Aniweh, Y., Kanyong, P. and Awandare, G.A. (2020) Recent Advances in the Development of Biosensors for Malaria Diagnosis. Sensors International, 20, 799.
https://doi.org/10.3390/s20030799
[37]  Yetisgin, A.A., Cetinel, S., Zuvin, M., Kosar, A. and Kutlu, O. (2020) Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules, 25, 2193.
https://doi.org/10.3390/molecules25092193
[38]  Zazo, H., Colino, C.I. and Lanao, J.M. (2016) Current Applications of Nanoparticles in Infectious Diseases. Journal of Controlled Release, 224, 86-102.
https://doi.org/10.1016/j.jconrel.2016.01.008
[39]  Volpedo, G., Costa, L., Ryan, N., Halsey, G., Satoskar, A. and Oghumu, S. (2019). Nanoparticulate Drug Delivery Systems for the Treatment of Neglected Tropical Protozoan Diseases. Journal of Venomous Animals and Toxins including Tropical Diseases, 25, e144118.
https://doi.org/10.1590/1678-9199-jvatitd-1441-18
[40]  Mehrizi, T.Z., Ardestani, M.S., Hoseini, M.H.M., Khamesipour, A., Mosaffa, N. and Ramezani, A. (2018) Novel Nanosized Chitosan-Betulinic Acid Against Resistant Leishmania Major and First Clinical Observation of Such Parasite in Kidney. Scintific Reports, 8, Article No. 11759.
https://doi.org/10.1038/s41598-018-30103-7
[41]  Ahmadpour, E., Godrati-Azar, Z., Spotin, A., Norouzi, R., Hamishehkar, H., Nami, S., Heydarian, P., Rajabi, S., Mohammadi, M. and Perez-Cordon, G. (2019) Nanostructured Lipid Carriers of Ivermectin as a Novel Drug Delivery System in Hydatidosis. Parasites & Vectors, 12, Article No. 469.
https://doi.org/10.1186/s13071-019-3719-x
[42]  Kowouvi, K., Alies, B., Gendrot, M., Gaubert, A., Vacher, G. and Gaudin, K., et al. (2019) Nucleoside-Lipid-Based Nanocarriers for Methylene Blue Delivery: Potential Application as Anti-Malarial Drug. RSC Advances, 9, 18844-18852.
https://doi.org/10.1039/C9RA02576F
[43]  Yazdian-Robati, R., Hedayati, N., Ramezani, M., Abnous, K. and Taghdisi, S.M. (2018) Colorimetric Gold Nanoparticles-Based Aptasensors. Nanomedicine Journal, 5, 1-5.
[44]  Borgheti-Cardoso, L.N., Anselmo, M.S., Lantero, E., Lancelot, A., Serrano, J.L., Hernández-Ainsa, S., Fernàndez-Busquets, X. and Sierra, T. (2020) Promising Nanomaterials in the Fight against Malaria. Journal of Materials Chemistry B, 8, 9428-9448.
https://doi.org/10.1039/D0TB01398F
[45]  Vassallo, A., Silletti, M.F., Faraone, I. and Milella, L. (2020) Nanoparticulate Antibiotic Systems as Antibacterial Agents and Antibiotic Delivery Platforms to Fight Infections. Journal of Nanomaterials, 2020, Article ID: 6905631.
https://doi.org/10.1155/2020/6905631
[46]  Coma-Cros, E.M., Biosca, A., Lantero, E., Manca, M.L., Caddeo, C., Gutiérrez, L., Ramírez, M., Borgheti-Cardoso, L.N., Manconi, M. and Fernàndez-Busquets, X. (2018) Antimalarial Activity of Orally Administered Curcumin Incorporated in Eudragit®-Containing Liposomes. International Journal of Molecular Sciences, 19, 1361.
https://doi.org/10.3390/ijms19051361
[47]  Weynom, E.J., Badawi, M.M., Yisa, A., Gana, B., Okorie, M., Itodo, G. and Adeniyi, K.A. (2019) Nanotechnology for Improved Anti-Malaria Efficacy: Review Update. International Journal of Cell Science & Molecular Biology, 6, 555690.
[48]  Varela-Aramburu, S., Ghosh, C., Goerdeler, F., Priegue, P., Moscovitz, O. and Seeberger, P.H. (2020) Targeting and Inhibiting Plasmodium falciparum Using Ultra-Small Gold Nanoparticles. ACS Applied Materials & Interfaces, 12, 43380-43387.
https://doi.org/10.1021/acsami.0c09075
[49]  Dkhil, M.A., Khalil, M.F., Diab, M.S.M., Bauomy, A.A. and Al-Quraishy, S. (2017) Effect of Gold Nanoparticleson Mice Splenomegaly Induced by Schistosomiasis Mansoni. Saudi Journal of Biological Sciences, 24, 1418-1423.
https://doi.org/10.1016/j.sjbs.2016.12.017
[50]  Dkhil, M.A., Khalil, M.F., Diab, M.S.M., Bauomy, A.A., Santourlidis, S., Al-Shaebi, E.M. and Al-Quraishy, S. (2019) Evaluation of Nanoselenium and Nanogold Activities against Murine Intestinal Schistosomiasis. Saudi Journal of Biological Sciences, 26, 1468-1472.
https://doi.org/10.1016/j.sjbs.2018.02.008
[51]  Kar, P.K., Murmu, S., Saha, S., Tandon, V. and Acharya, K. (2014) Anthelmintic Efficacy of Gold Nanoparticles Derived from a Phytopathogenic Fungus, Nigrospora oryzae. PLoS ONE, 9, e84693.
https://doi.org/10.1371/journal.pone.0084693
[52]  Saad, H., Soliman, M.I., Azzam, A.M. and Mostafa, B. (2015) Antiparasitic Activity of Silver and Copper Oxide Nanoparticles against Entamoeba histolytica and Cryptosporidium parvum Cysts. Journal of the Egyptian Society of Parasitology, 45, 593-602.
https://doi.org/10.12816/0017920
[53]  Roy, P., Saha, S.K., Gayen, P., Chowdhury, P. and Babu, S.P.S. (2018) Exploration of Antifilarial Activity of Gold Nanoparticle against Human and Bovine Filarial Parasites: A Nanomedicinal Mechanistic Approach. Colloids and Surfaces B: Biointerfaces, 161, 236-243.
https://doi.org/10.1016/j.colsurfb.2017.10.057
[54]  Hikal, W.M., Said-Al Ahl, H.A.H. and Tkachenko, K.G. (2020) Present and Future Potential of Antiparasitic Activity of Opuntia ficus-indica. Tropical Journal of Natural Product Research, 4, 672-679.
https://doi.org/10.26538/tjnpr/v4i10.3
[55]  Adeyemi, O.S., Molefe, N.I., Awakan, O.J., Nwonuma, C.O., Alejolowo, O.O., Olaolu, T., Maimako, R.F., Suganuma, K., Han, Y. and Kato, K. (2018) Metal Nanoparticles Restrict the Growth of Protozoan Parasites. Artificial Cells, Nanomedicine, and Biotechnology, 46, S86-S94.
https://doi.org/10.1080/21691401.2018.1489267
[56]  Nafari, A., Cheraghipour, K., Sepahvand, M., Shahrokhi, G., Gabal, E. and Mahmoudvand, H. (2020) Nanoparticles: New Agents toward Treatment of Leishmaniasis. Parasite Epidemiology and Control, 10, e00156.
https://doi.org/10.1016/j.parepi.2020.e00156
[57]  Vazini, H. (2018) The In Vitro and In Vivo Efficacy of Gold Nanoparticle in Comparison to the Glucantime as a Therapeutic Agent against L. Major. Journal of Infectious Diseases and Therapy, 6, 373.
https://doi.org/10.4172/2332-0877.1000373
[58]  Morilla, M.J. and Romero, E.L. (2015) Nanomedicines against Chagas Disease: An Update on Therapeutics, Prophylaxis and Diagnosis. Nanomedicine, 10, 465-481.
https://doi.org/10.2217/nnm.14.185
[59]  Baranwal, A., Chiranjivi, A.K., Kumar, A., Dubey, V.K. and Chandra, P. (2018) Design of Commercially Comparable Nanotherapeutic Agent against Human Disease-Causing Parasite, Leishmania. Scientific Reports, 8, Article No. 8814.
https://doi.org/10.1038/s41598-018-27170-1
[60]  Kumar, P., Shivam, P., Mandal, S., Prasanna, P., Kumar, S., Prasad, S.R., Kumar, A., Das, P., Ali, V., Singh, S.K. and Mandal, D. (2019) Synthesis, Characterization, and Mechanistic Studies of a Gold Nanoparticle-Amphotericin B Covalent Conjugate with Enhanced Antileishmanial Efficacy and Reduced Cytotoxicity. International Journal of Nanomedicine, 14, 6073-6101.
https://doi.org/10.2147/IJN.S196421
[61]  Fox, S. (2019) Gold Nanoparticles and Lasers Kill the Brain Parasite That Causes “Crazy Cat Lady” Syndrome.
https://www.popsci.com/
https://www.popsci.com/science/article/2010-03/gold-nanoparticles-and-lasers-kill-crazy-cat-lady-brain-parasite/
[62]  Abdulsattar, S.A. and Drwall, A.H. (2017) Effect of Gold and Nickel Nanoparticles on Immune Proteins of Toxoplasmosis Patients. Asian Journal of Pharmaceutical and Clinical Research, 10, 162-164.
[63]  Said, D., Elsamad, L. and Gohar, Y. (2012) Validity of Silver, Chitosan, and Curcumin Nanoparticles as Anti-Giardia Agents. Parasitology Research, 111, 545-554.
https://doi.org/10.1007/s00436-012-2866-1
[64]  Bavand, Z., Gholami, S., Honary, S., Rahimi, E.B., Torabi, N. and Barabadi, H. (2014) Effect of Gold Nanoparticles on Giardia Lamblia Cyst Stage in In Vitro. Journal of Arak University of Medical Sciences, 16, 27-37.
[65]  Sedighi, F., Abbasali, P.R., Maghsood, A. and Fallah, M. (2016) Comparison of Therapeutic Effect of Anti-Cryptosporidium Nano-Nitazoxanide (ntz) with Free Form of This Drug in Neonatal Rat. Scientific Journal of Hamadan University of Medical Sciences, 23, 134-140.
[66]  Allahverdiyev, A.M., Abamor, E.S., Bagirova, M., Ustundag, C.B., Kaya, C., Kaya, F., et al. (2011) Antileishmanial Effect of Silver Nanoparticles and Their Enhanced Antiparasitic Activity under Ultraviolet Light. International Journal of Nanomedicine, 6, 2705.
https://doi.org/10.2147/IJN.S23883
[67]  Allahverdiyev, A.M., Abamor, E.S., Bagirova, M. and Rafailovich, M. (2011) Antimicrobial Effects of TiO2 and Ag2O Nanoparticles against Drug-Resistant Bacteria and Leishmania Parasites. Future Microbiology, 6, 933-940.
https://doi.org/10.2217/fmb.11.78
[68]  Sazgarnia, A., Taheri, A.R., Soudmand, S., Parizi, A.J., Rajabi, O. and Darbandi, M.S. (2013) Antiparasitic Effects of Gold Nanoparticles with Microwave Radiation on Promastigotes and Amastigotes of Leishmania major. International Journal of Hyperthermia, 29, 79-86.
https://doi.org/10.3109/02656736.2012.758875
[69]  Venier-Julienne, M., Vouldoukis, I., Monjour, L. and Benoit, J. (1995) In Vitro Study of the Anti-Leishmanial Activity of Biodegradable Nanoparticles. Journal of Drug Targeting, 3, 23-29.
https://doi.org/10.3109/10611869509015929
[70]  Salah-Tazdaït, R, Tazdaït, D, Harrat, Z, Eddaikra, N, Abdi, N. and Mameri, N. (2015) Antiparasite Activity of Chitosan. Proceedings of 2015 International Conference on Chemical, Metallurgy and Environmental Engineering, Istanbul, 3-4 June 2015, 277-280.
[71]  Karimi, M., Dalimi, A., Jamei, F., Ghaffarifar, F. and Dalimi, A. (2015) The Killing Effect of Silver Nanoparticles and Direct Electric Current Induction on Leishmania major Promastigotes in Vitro. Modares Journal of Medical Sciences: Pathobiology, 18, 87-96.
[72]  Khosravi, A., Sharifi, I., Barati, M., Zarean, M. and Hakimi-Parizi, M. (2011) Anti-Leishmanial Effect of Nanosilver Solutions on Leishmania tropica Promastigotes by in-Vitro Assay. Zahedan Journal of Research in Medical Sciences, 13, 8-12.
[73]  Jameii, F., Dalimi Asl, A., Karimi, M. and Ghaffarifar, F. (2015) Healing Effect Comparison of Selenium and Silver Nanoparticles on Skin Leishmanial Lesions in Mice. Scientific Journal of Hamadan University of Medical Sciences, 22, 217-223.
[74]  Gaafar, M., Mady, R., Diab, R. and Shalaby, T.I. (2014) Chitosan and Silver Nanoparticles: Promising Anti-Toxoplasma Agents. Experimental Parasitology, 143, 30-38.
https://doi.org/10.1016/j.exppara.2014.05.005
[75]  Mohapatra, S.C., Tiwari, H.K., Singla, M., Rathi, B., Sharma, A., Mahiya, K., et al. (2010) Antimalarial Evaluation of Copper (II) Nanohybrid Solids: Inhibition of Plasmepsin II, a Hemoglobin-Degrading Malarial Aspartic Protease from Plasmodium falciparum. JBIC Journal of Biological Inorganic Chemistry, 15, 373-385.
https://doi.org/10.1007/s00775-009-0610-9
[76]  Tripathy, S., Das S., Chakraborty, S.P., Sahu, S.K., Pramanik, P. and Roy, S. (2012) Synthesis, Characterization of chitosan-Tripolyphosphate Conjugated Chloroquine Nanoparticle and Its In Vivo Anti-Malarial Efficacy against Rodent Parasite: A Dose and Duration Dependent Approach. International Journal of Pharmaceutics, 434, 292-305.
https://doi.org/10.1016/j.ijpharm.2012.05.064
[77]  Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K. and Thangamani, S. (2012) Synthesis of Silver Nanoparticles Using Leaves of Catharanthus roseus Linn. G. Don and their Antiplasmodial Activities. Asian Pacific Journal of Tropical Biomedicine, 2, 574-580.
https://doi.org/10.1016/S2221-1691(12)60100-2
[78]  Nayak, A.P., Tiyaboonchai, W., Patankar, S., Madhusudhan, B. and Souto, E.B. (2010) Curcuminoids-Loaded Lipid Nanoparticles: Novel Approach towards Malaria Treatment. Colloids and Surfaces B: Biointerfaces, 81, 263-273.
https://doi.org/10.1016/j.colsurfb.2010.07.020
[79]  Abulaihaiti, M., Wu, X.W., Qiao, L., Lv, H.L., Zhang, H.W., Aduwayi, N., et al. (2015). Efficacy of Albendazole-Chitosan Microsphere-Based Treatment for Alveolar Echinococcosis in Mice. PLoS Neglected Tropical Diseases, 9, e0003950.
https://doi.org/10.1371/journal.pntd.0003950
[80]  Brodaczewska, K., Wolaniuk, N., Donskow-Lysoniewska, K. and Doligalska, M. (2013) Chitosan Stimulates Lymphocyte Proliferation during the Muscle Phase of Trichinella spiralis Infection in Mice. 15th International Congress of Immunology, Milan, 22-27 August 2013.
https://doi.org/10.3389/conf.fimmu.2013.02.01117
[81]  Gherbawy, Y.A., Shalaby, I.M., El-sadek, M.S.A., Elhariry, H.M. and Banaja, A.A. (2013) The Anti-Fasciolasis Properties of Silver Nanoparticles Produced by Trichoderma harzianum and Their Improvement of the Anti-Fasciolasis Drug Triclabendazole. International Journal of Molecular Sciences, 14, 21887-21898.
https://doi.org/10.3390/ijms141121887

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133